精英家教网 > 高中数学 > 题目详情
8.已知各项均为正数的数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}均为等差数列,且a1=1.
(1)求数列{an}的通项公式;
(2)若$\sqrt{{b}_{n}}$是$\frac{1}{{a}_{n}}$与$\frac{1}{{a}_{n+1}}$的等比中项,记Tn是数列{bn}的前n项和,证明Tn<$\frac{1}{2}$.

分析 (1)设数列{an}的公差为d,求得通项,由{$\sqrt{{S}_{n}}$}为等差数列,即有2$\sqrt{{S}_{2}}$=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$,得到d的方程,可得d=2,进而得到所求通项;
(2)运用等比数列的性质,求得bn=$\frac{1}{{a}_{n}}$•$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),再由裂项相消求和可得{bn}的前n项和,由不等式的性质即可得证.

解答 (1)解:设数列{an}的公差为d,
则an=1+(n-1)d,(d>0),
由{$\sqrt{{S}_{n}}$}为等差数列,
即有2$\sqrt{{S}_{2}}$=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$,
即为2$\sqrt{2+d}$=1+$\sqrt{3+3d}$,
解得d=2,
则an=2n-1;
(2)证明:$\sqrt{{b}_{n}}$是$\frac{1}{{a}_{n}}$与$\frac{1}{{a}_{n+1}}$的等比中项,
即有bn=$\frac{1}{{a}_{n}}$•$\frac{1}{{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
则Tn=b1+b2+…+bn
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$.
即有Tn<$\frac{1}{2}$.

点评 本题考查等差数列的通项公式和求和公式的运用,等比数列的性质,以及数列的求和方法:裂项相消求和,以及不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设M(x0,y0)为抛物线C:x2=4y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,1)B.[0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(x,y).若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(2)已知集合A=[-2,2],B=[-1,1],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).求以(x,y)为坐标的点到直线x+y=0的距离不大于$\frac{\sqrt{2}}{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数h(x)=ax-lnx(x∈R)(注:下列各个小问中e都为自然对数的底数).
(Ⅰ)当x=$\frac{1}{2}$是h(x)的极值点时,求曲线h(x)在点(1,h(1))处的切线方程;
(Ⅱ)若a=2时,存在实数k,使不等式kx+1≤h(x)在x∈[$\frac{1}{e}$,e]成立,求k的取值范围.
(Ⅲ)当x∈(0,$\frac{1}{e}$]时,求h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[1,3)B.(1,3)C.[0,2]D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.把一个体积为64cm3、表面涂有红漆的正方体木块锯成64个体积为1cm3的小正方体,从中任取一块,则这一块有且只有一面涂有红漆的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿 BD折起到△EBD的位置,使平面EBD⊥平面ABD
(Ⅰ)求证:AB⊥DE
(Ⅱ)若点F为 BE的中点,求三棱锥E-AFD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)为定义在$[{-\frac{π}{2},\frac{π}{2}}]$上的函数,若对于任意的x∈[-1,1],都有f(arcsinx)+3f(-arcsinx)=arccosx成立,则函数f(x)的值域为[-$\frac{π}{8}$,$\frac{3π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间(此时间不包含广告).如果你是电视台的制片人,电视台每周播映两套连续剧各多少次,才能获得最高的收视率?

查看答案和解析>>

同步练习册答案