精英家教网 > 高中数学 > 题目详情
18.设M(x0,y0)为抛物线C:x2=4y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,1)B.[0,1]C.(1,+∞)D.[1,+∞)

分析 由条件求得抛物线的焦点和准线方程,由直线和圆相交的条件可得|FM|>2,由抛物线的定义|FM|可由y0表达,由此可求y0的取值范围.

解答 解:∵抛物线C:x2=4y的焦点F(0,1),准线方程为:y=-1,
设F到准线的距离d1,M(x0,y0)到准线的距离d2
则d1=2,d2=y0+1=|FM|(抛物线定义),
依题意得:|FM|>d1=2,
即y0+1>2,
解得:y0>1.
∴y0的取值范围是(1,+∞).
故选C.

点评 本题考查直线和圆的位置关系、抛物线的定义的运用.抛物线上的点到焦点的距离往往转化为到准线的距离处理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若用模型y=ax2来描述汽车紧急刹车后滑行的距离ym与刹车时的速度xkm/h的关系,而某种型号的汽车在速度为60km/h时,紧急刹车后滑行的距离为20m.在限速为100km/h的高速公路上,一辆这种型号的车紧急刹车后滑行的距离为50m,问这辆车是否超速行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sinx+siny=1,则cosx-cosy的取值范围是(  )
A.$[-\sqrt{3},\;\;\sqrt{3}]$B.$[-\sqrt{2},\;\;\sqrt{2}]$C.[-1,1]D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)解不等式$\frac{1}{x}<1$;
(2)已知a,b∈(0,+∞),且a+2b=1,求$\frac{1}{a}+\frac{2}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知loga484=m,loga88=n,试用m、n表示log211.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}\frac{{2k{x^2}}}{x+1},x∈({\frac{1}{2},1}]\\-\frac{1}{3}x-\frac{1}{12},x∈[{0,\frac{1}{2}}]\end{array}$,g(x)=$\frac{{4{x^2}-12x-3}}{2x+1}({0≤x≤1})$,其中实数k为常数.
(1)求g(x)的值域.
(2)若函数f(x)是区间[0,1]的单调函数,求实数k的取值范围.
(3)在(2)的条件下,若对任何x1∈[0,1],都存在x2∈[0,1],使得g(x1)=f(x2)成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若sin6α+cos6α=$\frac{1}{4}$,求cos2015α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M={(x,y)|x>0,y>0,x+y=k且x≠y}(其中k为常数,且k>0)、
(1)若(x,y)∈M,设t=xy,求t的取值范围;
(2)若对任意(x,y)∈M均有($\frac{1}{x}$-x)($\frac{1}{y}$-y)≠($\frac{k}{2}$-$\frac{2}{k}$)2,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知各项均为正数的数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}均为等差数列,且a1=1.
(1)求数列{an}的通项公式;
(2)若$\sqrt{{b}_{n}}$是$\frac{1}{{a}_{n}}$与$\frac{1}{{a}_{n+1}}$的等比中项,记Tn是数列{bn}的前n项和,证明Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案