精英家教网 > 高中数学 > 题目详情
10.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f″是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.请你根据这一发现为条件,若给定函数g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x-\frac{5}{12}$,则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=1008.

分析 由题意对已知函数求两次导数可得图象关于点($\frac{1}{2}$,$\frac{1}{2}$)对称,即f(x)+f(1-x)=1,即可得到结论.

解答 解:函数的导数g′(x)=x2-x+2,
g″(x)=2x-1,
由g″(x0)=0得2x0-1=0
解得x0=$\frac{1}{2}$,而g($\frac{1}{2}$)=$\frac{1}{2}$,
故函数g(x)关于点($\frac{1}{2}$,$\frac{1}{2}$)对称,
∴g(x)+g(1-x)=1,
故设g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=m,
则g($\frac{2016}{2017}$)+g($\frac{2015}{2017}$)+…g($\frac{1}{2017}$)=m,
两式相加得1×2016=2m,
则m=1008,
故答案为:1008

点评 本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.求和的过程中使用了倒序相加法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示,下列说法正确的有(  )个
①函数f(x)的图象关于直线$x=-\frac{5π}{12}$对称
②函数f(x)在$[-\frac{π}{3},0]$上单调递增
③函数f(x)的图象关于点$(-\frac{2π}{3},0)$对称
④将函数y=2sin2x的图象向左平移$\frac{π}{3}$个单位得到f(x)的图象.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求解以下两小题:
(1)91100除以100的余数是几?
(2)若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:
(i)a1+a2+a3+…+a11
(ii)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的函数f(x),如果对任意的x都有f(x+6)≤f(x)+3,f(x+2)≥f(x)+1,f(4)=309,则f(2 014)=1314.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=x3+3x2+6x+14且f(a)=1,f(b)=19.则a+b=(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点P在面积为2的正△ABC内部运动,若动点P使得△PBC,△PAB,△PAC的面积都不大于1,则动点P的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条统计图所示.则甲、乙、丙三人的训练成绩方差S2,S2,S2的大小关系是S2<S2<S2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线C1:y=ex与曲线C2:y=(x+a)2.若两个曲线在交点处有相同的切线,则实数a的值为2-ln4.

查看答案和解析>>

同步练习册答案