精英家教网 > 高中数学 > 题目详情
1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB=2,E,F分别为PC,CD的中点.
(Ⅰ)证明:AB⊥平面BEF;
(Ⅱ)若PA=$\frac{2\sqrt{5}}{5}$,求二面角E-BD-C.

分析 (Ⅰ)只需证明AB⊥BF.AB⊥EF即可.
(Ⅱ)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,
求出平面CDB的法向量为$\overrightarrow{{n}_{1}}=\{0,0,1)$,平面EDB的法向量为$\overrightarrow{{n}_{2}}=(x,y,z)$,
设二面角E-BD-C的大小为θ,则$cosθ=|cos<\overrightarrow{n_1},\overrightarrow{n_2}>|=\frac{{|\overrightarrow{n_1}•\overrightarrow{n_2}|}}{{|{{\overrightarrow n}_1}|•|\overrightarrow{n_2}|}}$=$\frac{{\sqrt{5}}}{{1×\sqrt{10}}}=\frac{{\sqrt{2}}}{2}$,

解答 解:(Ⅰ)证:由已知DF∥AB且∠DAB为直角,故ABFD是矩形,
从而AB⊥BF.
又PA⊥底面ABCD,∴平面PAD⊥平面ABCD,
∵AB⊥AD,故AB⊥平面PAD,∴AB⊥PD,
在△PCD内,E、F分别是PC、CD的中点,EF∥PD,∴AB⊥EF.
由此得AB⊥平面BEF…(6分)
(Ⅱ)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,
则$\overrightarrow{BD}=(-1,2,0),\overrightarrow{BE}=(0,1,\frac{\sqrt{5}}{5})$
设平面CDB的法向量为$\overrightarrow{{n}_{1}}=\{0,0,1)$,平面EDB的法向量为$\overrightarrow{{n}_{2}}=(x,y,z)$,
则  $\left\{{\begin{array}{l}{\overrightarrow{n_2}•\overrightarrow{BD}=0}\\{\overrightarrow{n_2}•\overrightarrow{BE}=0}\end{array}}\right.$$\left\{\begin{array}{l}-x+2y=0\\ y+\frac{{\sqrt{5}z}}{5}=0\end{array}\right.$可取$\overrightarrow{n_2}=({2,1,-\sqrt{5}})$
设二面角E-BD-C的大小为θ,则$cosθ=|cos<\overrightarrow{n_1},\overrightarrow{n_2}>|=\frac{{|\overrightarrow{n_1}•\overrightarrow{n_2}|}}{{|{{\overrightarrow n}_1}|•|\overrightarrow{n_2}|}}$=$\frac{{\sqrt{5}}}{{1×\sqrt{10}}}=\frac{{\sqrt{2}}}{2}$,
所以,$θ=\frac{π}{4}$…(12分)

点评 本题考查了空间线面垂直的判定,向量法求二面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知四棱锥P-ABCD的底面为矩形,△PBC为等边三角形,平面PBC⊥平面ABCD,$AB=\sqrt{6}$,BC=3,则四棱锥P-ABCD外接球半径为$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:选择题

已知等差数列为数列的前项和,若),记数列的前项和为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

具有性质:的函数,我们称为满足“倒负”变换的函数,下列函数:

;②;③其中满足“倒负”变换的函数是( )

A.①② B.①③ C.②③ D.①

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

设函数,若,则实数等于( )

A. B. C.2 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱椎P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD为梯形,AB∥CD,∠BAD=∠ADC=90°,DC=2AB=2,DA=PD=$\sqrt{3}$,E为BC的中点,连结AE,交BD于点O.
(Ⅰ)求证:AE⊥平面PBD;
(Ⅱ)求二面角D-PB-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=9-x2的导数(导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数f(x)=$\sqrt{2}$sin2x-$\sqrt{2}$cos2x+1的图象向左平移$\frac{π}{4}$个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(  )
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=$\frac{π}{8}$
C.${∫}_{0}^{\frac{π}{2}}$g(x)dx=$\sqrt{2}$
D.函数y=g(x)在区间[$\frac{π}{12}$,$\frac{5π}{8}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线的方程是$\sqrt{3}x-y+1=0$,则直线的倾斜角是(  )
A.120°B.150°C.30°D.60°

查看答案和解析>>

同步练习册答案