精英家教网 > 高中数学 > 题目详情
11.已知直线的方程是$\sqrt{3}x-y+1=0$,则直线的倾斜角是(  )
A.120°B.150°C.30°D.60°

分析 根据题意,设直线的倾斜角为θ,结合直线的方程可得其斜率k=$\sqrt{3}$,由直线的斜率为倾斜角的关系可得tanθ=$\sqrt{3}$,解可得θ的值,即可得答案.

解答 解:根据题意,设直线的倾斜角为θ,(0°≤θ<180°)
直线的方程是$\sqrt{3}x-y+1=0$,变形可得y=$\sqrt{3}$x+1,
其斜率k=$\sqrt{3}$,
则有tanθ=$\sqrt{3}$,
直线的倾斜角θ=60°;
故选:D.

点评 本题考查直线的倾斜角计算,注意要先求出直线的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB=2,E,F分别为PC,CD的中点.
(Ⅰ)证明:AB⊥平面BEF;
(Ⅱ)若PA=$\frac{2\sqrt{5}}{5}$,求二面角E-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是平行四边形,$∠BAD={60°},AB=2,PD=\sqrt{3},AD=BD$,O为AC与BD的交点,E为棱PB上一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PE=2EB,求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则(  )
A.z的最小值为3,z无最大值B.z的最小值为1,最大值为3
C.z的最小值为3,z无最小值D.z的最小值为1,z无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆F的圆心坐标为(1,0),且被直线x+y-2=0截得的弦长为$\sqrt{2}$.
(1)求圆F的方程;
(2)若动圆M与圆F相外切,又与y轴相切,求动圆圆心M的轨迹方程;
(3)直线l与圆心M轨迹位于y轴右侧的部分相交于A、B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=4x的交点为A,B,且直线AB过双曲线与抛物线的公共焦点F,则双曲线的实轴长为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$C.$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个周)和市场占有率(y%)的几组相关数据如表:
x12345
y0.030.060.10.140.17
(Ⅰ)根据表中的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$;
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=Asin(wx+φ)+B(A>0,w>0,|φ|<\frac{π}{2})$的 部分图象如图所示:
(1)求f(x)的解析式;
(2)求f(x)的单调区间和对称中心坐标;
(3)将f(x)的图象向左平移$\frac{π}{6}$个单位,在将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=$\sqrt{3}$,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B-EF-D的余弦值.

查看答案和解析>>

同步练习册答案