精英家教网 > 高中数学 > 题目详情
已知曲线C1:y=
x2e
+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.
分析:(I)可设直线m:y=2x与曲线曲线C1y=
x2
e
+e
的切点为(a,b)再根据导数的几何意义可得f(a)=2求出a再代入曲线方程求出b,同理求出与曲线C2的另一切点然后比较两切点是否是同一点即可得出结论.
(Ⅱ)求出M,N,P点的坐标然后利用两点间的距离公式求出|MP|,|NP|即可求出f(t),最后要求最大值只须利用导数判断函数f(t)在区间[e-3,e3]上的单调性即可求出最大值.
解答:解:(I)对于曲线C1y=
x2
e
+e
,设切点P(a,b),有
2a
e
=2
∴a=e,故切点为P(e,2e),
切线:y-2e=2(x-e),即y=2x.所以直线m与曲线C1相切于点P(e,2e)
同理可证直线m与曲线C2也相切于点P(e,2e).
(II)由题意易得M(t,
t2
e
+e
),N(t,2elnt),P(t,2t)
∴由两点间的距离公式可得|MP|=
t2
e
+e-2t
,|PN|=2t-2elnt
∴f(t)=
t2
e
+2elnt-4t+e(e-3≤t≤e3)

f(t)=
2t
e
+
2e
t
-4
=
2(t-e)2
t
≥0
∴f(t)在[e-3,e3]上单调增,故ymax=f(e3)=e5-4e3+7e.
点评:本题主要考查了利用导数的几何意义求切点坐标和利用导数判断函数的单调性然后求函数的最值.解题的关键是要理解导数的几何意义在解题中的连接作用和如何利用导数判断函数的单调性!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,直线x=
1
3
与曲线C1,C2分别交于B,D.则四边形ABOD的面积S为(  )
A、
4
9
B、
3
C、2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1:y=
1
3
x3-3x+
4
3
,曲线C2:y=x2-
9
2
x+m
,若当x∈[-2,2]时,曲线C1在曲线C2的下方,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线c1:y=ex,曲线c2:y=cosx,则由曲线c1,c2和直线x=
π
2
在第一象限所围成的封闭图形的面积为
e
π
2
-2
e
π
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:矩阵与变换
已知曲线C1:y=
1
x
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵M2=
20
03
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1:y=x2-1与x轴相交于A,B两点,与y轴相交于点C,圆C2经过A,B,C三点.
(1)求圆C2的方程;
(2)过点P(0,m)(m<-1)的直线l与圆C2相切,试探讨直线l与曲线C1的位置关系.

查看答案和解析>>

同步练习册答案