精英家教网 > 高中数学 > 题目详情
15.若复数z满足z2+2|$\overline{z}$|=3,求z.

分析 设z=x+yi (x、y∈R),然后代入z2+2|$\overline{z}$|=3进行化简变形,再根据复数相等的定义建立等式关系,解之即可求出复数z.

解答 解:设z=x+yi (x、y∈R),
则原方程变成x2-y2+2xyi+2$\sqrt{{x}^{2}+{y}^{2}}$-3=0.
?$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}+2\sqrt{{x}^{2}+{y}^{2}}-3=0}\\{2xy=0}\end{array}\right.$?$\left\{\begin{array}{l}{x=0}\\{-{y}^{2}+2|y|-3=0}\end{array}\right.$或$\left\{\begin{array}{l}{y=0}\\{{x}^{2}+2|x|-3=0}\end{array}\right.$(4分)
?$\left\{\begin{array}{l}{y=0}\\{x=1}\end{array}\right.$
∴z为1.

点评 本题主要考查了复数的模,以及复数相等的重要条件,同时考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和是${S_n}={n^2}+n$,则数a4=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin(2x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线x=$\frac{π}{2}$对称B.在(0,$\frac{π}{4}$)上单调递减,为奇函数
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,为偶函数D.周期为π,图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了安全起见,高速公路同一车道上行驶的前后两辆汽车之间的距离不得小于kx2(单位:m)其中x(单位:km/h)是车速,k为比例系数,经测定,当车速为60km/h时,安全车距为40m,假设每辆车的平均车长为5m.
(1)写出在安全许可的情况下,某路口同一车道的车流量y(单位:辆/min)关于车速x的函数;
(2)如果只考虑车流量,规定怎样的车速可以使得高速公路上的车流量最大?这种规定可行吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.4sin80°-$\frac{cos10°}{sin10°}$等于(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.2$\sqrt{2}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“lnx<0”是“x<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将某校高三年级300名学生的毕业会考数学成绩进行整理后,分成五组,第-组[75,80),第二组[80,85),第三组[86,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分.
(1)请在图中补全频率分布直方图并估算这300名学生数学成绩的中位数;
(2)若M大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试,在这6名学生中随机抽取2名学生接受考官B的面试,求第4组中至少有1名学生被考官B面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=2cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)+$\sqrt{3}$sin2x,求:
(1)周期;(2)值域;(3)单调减区间.

查看答案和解析>>

同步练习册答案