精英家教网 > 高中数学 > 题目详情
10.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上任意一点M到两个焦点的距离和是4,椭圆的焦距是2,则椭圆C的标准方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

分析 根据题意,由椭圆的标准方程分析可得椭圆的焦点在x轴上,再结合椭圆的定义可得2a=4,2c=2,即可得a、c的值,计算可得b的值,将a、b的值代入椭圆方程可得答案.

解答 解:根据题意,椭圆C的方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其焦点在x轴上,
又由其上任意一点M到两个焦点的距离和是4,椭圆的焦距是2,
则有2a=4,2c=2;
即a=2,c=1,
则有b2=a2-c2=3;
则椭圆的方程为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
故答案为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

点评 本题考查椭圆的几何性质,关键是掌握椭圆的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在直线l的参数方程是$\left\{\begin{array}{l}x=2t\\ y=4t+a\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=4cosθ-4sinθ.
(1)求圆C的极坐标方程化为直角坐标方程;
(2)若圆上有且仅有三个点到直线l距离为$\sqrt{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为30秒,小明来到该路口遇到红灯,则至少需要等待10秒才出现绿灯的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,$BA\user1{∥}$平面PCD,平面PAD平面ABCD,CD⊥AD,△APD为等腰直角三角形,$PA=PD=\frac{{\sqrt{2}}}{2}CD=\sqrt{2}$.
(1)证明:平面PAB⊥平面PCD;
(2)若三棱锥B-PAD的体积为$\frac{1}{3}$,求平面PAD与平面PBC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的首项为1,公差为d(d∈N*)的等差数列,若81是该数列中的一项,则公差不可能是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xcosx-(a+1)sinx,x∈[0,π],其中$\frac{3π}{4}≤α≤\frac{{2\sqrt{3}π}}{3}$.
(1)证明:当$x∈[0,\frac{π}{2}]$时,f(x)≤0;
(2)判断f(x)的极值点个数,并说明理由;
(3)记f(x)最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知长方体切去一个角的几何体直观图如图1所示给出下列4个平面图如图2:

则该几何体的主视图、俯视图、左视图的序号依次是(  )
A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={0,1,2},B={x|1≤x≤4},集合A∩B=(  )
A.B.{1,2}C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=xlnx+x(x-a)2(a∈R),若存在$x∈[{\frac{1}{2},2}]$,使得f(x)>xf'(x)成立,则实数a的取值范围是(  )
A.$({\frac{9}{4},+∞})$B.$({\frac{3}{2},+∞})$C.$({\sqrt{2},+∞})$D.(3,+∞)

查看答案和解析>>

同步练习册答案