精英家教网 > 高中数学 > 题目详情
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.
(Ⅰ)求证:△DFE∽△EFA;
(Ⅱ)如果FG=1,求EF的长.
考点:相似三角形的判定,与圆有关的比例线段
专题:立体几何
分析:(Ⅰ)由同位角相等得出∠BCE=∠FED,由圆中同弧所对圆周角相等得出∠BAD=∠BCD,结合公共角∠EFD=∠EFD,证出△DEF∽△EFA;
(Ⅱ)由(Ⅰ)得EF2=FA•FD,再由圆的切线长定理FG2=FD•FA,所以FG=EF=1.
解答: 证明:(Ⅰ)∵EF∥CB,
∴∠DEF=∠DCB.
∴∠DEF=∠DAB,
∴∠DEF=∠DAB.
又∵∠DFE=∠EFA,
∴△DFE∽△EFA…(4分)
解:(Ⅱ)∵△DFE∽△EFA,
∴EF:FA=FD:EF.
∴EF2=FA•FD.
又∵FG切圆于G,
∴GF2=FA•FD.
∴EF2=FG2
∴EF=FG.
已知EF=1,
∴FG=1…(8分)
点评:本题考查与圆有关的角、比例线段,要善于寻找有关线段的数量关系,结合相关性质、定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-
3
2
|
,x∈[1,2)
则当x∈[-4,-2)时,函数f(x)的最小值为(  )
A、-
1
16
B、-
1
4
C、-
1
2
D、-
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-(a+1)x(a∈R)
(1)当x>0时,讨论函数f(x)的单调性;
(2)若x∈R,f(x)≥b(b∈R)恒成立,求(a+1)b的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+tanα
1-tanα

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x与过其焦点且垂直于x轴的直线相交于A,B两点,其准线与x轴的交点为M,则过M,A,B三点的圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
1+log2x
>1-log2x的解是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+bx2+cx的极值点为x=-
2
3
和x=1
(1)求b,c的值与f(x)的单调区间
(2)当x∈[-1,2]时,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的透明方格,用红、蓝、黄、绿4种颜色进行染色,试问有多少不同的方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-ax2+bx+c的导函数为偶函数,则a的值为(  )
A、-1B、1C、0D、2

查看答案和解析>>

同步练习册答案