精英家教网 > 高中数学 > 题目详情

(本题12分)直线(极轴与x轴的非负半轴重合,且单位长度相同)。
(1)求圆心C到直线的距离;   (2)若直线被圆C截的弦长为的值。

(1) ;(2) 。

解析试题分析:(1)把化为普通方程为 ……………………2分
化为直角坐标系中的方程为 ……………………4分
圆心到直线的距离为 …………………… 6分
(2)由已知 ……………………9分
 ……………………12分
考点:本题主要考查参数方程,简单曲线的极坐标方程,直线与圆的位置关系。
点评:容易题,涉及参数方程、极坐标的题目,往往难度不太大,涉及圆的弦长问题,需关注弦长之半、半径、圆心到直线的距离构成的“特征三角形”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,其中左焦点. 
(Ⅰ)求出椭圆C的方程;
(Ⅱ) 若直线与曲线C交于不同的A、B两点,且线段AB的中点M在圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,
与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知圆

(1)直线与圆相交于两点,求
(2)如图,设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线轴分别交于,问是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)一束光通过M(25,18)射入被x轴反射到圆C:x2+(y-7)2=25上.
(1)求通过圆心的反射光线所在的直线方程;
(2)求在x轴上反射点A的活动范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点.若l与圆x2+y2=1相切,求证:OP⊥OQ;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(本小题14分)已知圆C的圆心在直线上,且与直线相切,被直线截得的弦长为,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C过点(1,0),且圆心在轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2,求圆C的标准方程.

查看答案和解析>>

同步练习册答案