精英家教网 > 高中数学 > 题目详情
9.函数f(x)=x-$\frac{1}{3}$x3的递增区间为(  )
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(0,+∞)

分析 先求函数导数,令导数大于等于0,解得x的范围就是函数的单调增区间.

解答 解:对函数y=x-$\frac{1}{3}$x3求导,得,y′=1-x2
令y′>0,即1-x2>0,解得,-1<x<1
∴函数y=x-$\frac{1}{3}$x3的递增区间为(-1,1),
故选:B.

点评 本题主要考查了导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为(  )
A.180B.200C.128D.162

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用反证法证明命题:“若a,b∈Z,ab能被5整除,则a,b中至少有一个能被5整除”,那么假设的内容是(  )
A.a,b都能被5整除B.a,b都不能被5整除
C.a,b有一个能被5整除D.a,b有一个不能被5整除

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与两个相交平面的交线平行的直线和这两个平面的位置关系是(  )
A.都平行B.都相交
C.在两平面内D.至少和其中一个平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(1)求证:GH∥平面ADPE;
(2)M是线段PC上一点,且PM=$\frac{3\sqrt{2}}{2}$,求二面角C-EF-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用反证法证明命题“a,b∈R,a+b=0,那么a,b中至少有一个不小于0”,反设的内容是假设a,b都小于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若|$\frac{x}{x+1}$|>$\frac{x}{x+1}$则实数x的取值范围是(  )
A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{4}{x^2}$+3x(x>0)取得最小值时,x的值是(  )
A.$\frac{1}{3}\root{3}{36}$B.$\frac{2}{3}\root{3}{9}$C.$\frac{1}{3}\sqrt{36}$D.$\frac{2}{3}\sqrt{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派出一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场),由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中率只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件A为“一班第三位同学没能出场罚球”,求事件A发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一点球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某队队员射入点球且另一队队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛.若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方用过抽签决定胜负,以随机变量X记录双方进行一对一点球决胜的轮数,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案