精英家教网 > 高中数学 > 题目详情
2.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)满足:对任意的x1,x2∈(-∞,2](x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,且f(4)=0,则关于x不等式$\frac{f(x)}{x}<0$的解集是(  )
A.(-∞,0)∪(4,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(0,4)D.(0,2)∪(2,4)

分析 由已知可得函数f(x)在(-∞,2]上为减函数,且f(4)=0,结合函数f(x)的图象关于直线x=2对称,可得:f(x)在[2,+∞)上为增函数,且f(0)=0,分类讨论可得答案.

解答 解:∵对任意的x1,x2∈(-∞,2](x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
∴函数f(x)在(-∞,2]上为减函数,且f(4)=0,
又由函数f(x)的图象关于直线x=2对称,
∴f(x)在[2,+∞)上为增函数,且f(0)=0,
当x∈(-∞,0),f(x)>0,满足$\frac{f(x)}{x}<0$,
当x∈(0,4),f(x)<0,满足$\frac{f(x)}{x}<0$,
当x∈(4,+∞),f(x)<0,不满足$\frac{f(x)}{x}<0$,
综上可得:x∈(-∞,0)∪(0,4),
故选:C.

点评 本题考查的知识点是抽象函数的应用,函数的单调性,函数的对称性,函数的零点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在函数y=sin|x|、y=|sinx|、y=sin(2x+$\frac{2π}{3}$)、y=tan(2x+$\frac{2π}{3}$)中,最小正周期为π的函数的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间[0,1]中随机取出两个数,则两数之和不小于$\frac{4}{5}$的概率是(  )
A.$\frac{8}{25}$B.$\frac{9}{25}$C.$\frac{18}{25}$D.$\frac{17}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.①“?x∈R,x2-3x+3=0”的否定是真命题;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”必要不充分条件;
③“若xy=0,则x,y中至少有一个为0”的否命题是真命题;
④曲线$\frac{x^2}{25}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1(9<k<25)$有相同的焦点;
⑤过点(1,3)且与抛物线y2=4x相切的直线有且只有一条.
其中是真命题的有:①③④(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=(x-a)•(x-b)(其中a>b)的图象如图所示,则函数g(x)=logax+b的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(1)记甲班“口语王”人数为m,乙班“口语王”人数为n,则m,n的大小关系是m<n.
(2)甲班10名同学口语成绩的方差为86.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=lgm+(lgn)i,其中i是虚数单位.若复数z在复平面内对应的点在直线y=-x上,则mn的值等于(  )
A.0B.1C.10D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,若a2=1,a3=2,则S4=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-1-x-ax2
(Ⅰ)当a=0时,求证:f(x)≥0;
(Ⅱ)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)若x>0,证明(ex-1)ln(x+1)>x2

查看答案和解析>>

同步练习册答案