精英家教网 > 高中数学 > 题目详情

【题目】已知函数 在区间[﹣ ]上有f(x)>0恒成立,则a的取值范围为(
A.(0,2]
B.[2,+∞)
C.(0,5)
D.(2,5]

【答案】C
【解析】解:∵函数f(x)=ax3 x2+1,(x∈R,a>0)

∴f′(x)=3ax2﹣3x,

由f′(x)=0,得x=0,或x=

①当 ,0<a≤2时,

∵f(﹣ )= ,f( )= + ,f(0)=1,

∴在区间[﹣ ]上,f(x)min=

∵在区间[﹣ ]上,f(x)>0恒成立,

∴f(x)min= >0,解得a<5,

∴0<a≤2.

②当 ,a>2时,

∵f(﹣ )= ,f( )= + ,f(0)=1,f( )=1﹣

∴在区间[﹣ ]上,f(x)min=

∵在区间[﹣ ]上,f(x)>0恒成立,

∴f(x)min= >0,解得a<5,

∴2<a<5.

综上所述,a的取值范围是(0,5),

故选:C.

【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知二面角α-MN-β的大小为60°,菱形ABCD在平面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥平面α,垂足为O.

(1)证明:AB⊥平面ODE.

(2)求异面直线BC与OD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性,并给出证明;

(2)解不等式:

(3)若函数上单调递减,比较f(2)+f(4)+…+f(2n)与2nnN*)的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足: ,anan+1<0(n≥1),数列{bn}满足:bn=an+12﹣an2(n≥1). (Ⅰ)求数列{an},{bn}的通项公式
(Ⅱ)证明:数列{bn}中的任意三项不可能成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式: ,如果把这个数列{an}排成如图形状,并记A(m,n)表示第m行中从左向右第n个数,则A(10,4)的值为(
A.1200
B.1280
C.3528
D.3612

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,且点是该函数图象的一个最高点.

(1)求函数的解析式;

(2)若,求函数的值域;

(3)把函数的图象向右平移个单位长度,得到函数上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与 的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)< 对任意x>0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,圆:.

(1)求截得圆弦长最长时的直线方程;

(2)若直线被圆N所截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比。一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元。设每天的购票人数为,盈利额为

之间的函数关系;

该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?

(参考数据:.)

查看答案和解析>>

同步练习册答案