精英家教网 > 高中数学 > 题目详情
(2011•广东模拟)(几何证明选讲)如图所示,AC和AB分别是圆O的切线,B、C 为切点,且OC=3,AB=4,延长OA到D点,则△ABD的面积是
48
5
48
5
分析:利用勾股定理求出AO,可得AD的值,由直角三角形相似得 
OB
h
=
AO
AD
,求出h 值,代入△ABD的面积公式进行运算.
解答:解:由题意得 AO=
AB2+OB2
=
16+9
=5,AD=5+3=8,设D到AB的距离等于h,
由直角三角形相似得 
OB
h
=
AO
AD
3
h
=
5
8
,h=
24
5

故△ABD的面积等于 
1
2
AB•h
=
48
5

故答案为:
48
5
点评:本题考查直线和圆相切的性质,相似三角形的性质,求出D到AB的距离等于h是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)给定函数f(x)=
x2
2(x-1)

(1)试求函数f(x)的单调减区间;
(2)已知各项均为负的数列{an}满足,4Sn•f(
1
an
)=1
,求证:-
1
an+1
ln
n+1
n
<-
1
an

(3)设bn=-
1
an
,Tn为数列 {bn} 的前n项和,求证:T2012-1<ln2012<T2011

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知集合M={y|y=x2-1,x∈R},N={x|y=
2-x2
}
,则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知函数f(x)=
a-x
+
x
(a∈N*),对定义域内任意x1,x2,满足|f(x1)-f(x2)|<1,则正整数a的取值个数是
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知命题“?x∈R,x2+2ax+1<0”是真命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知线段AB的两个端点分别为A(0,1),B(1,0),P(x,y)为线段AB上不与端点重合的一个动点,则(x+
1
x
)(y+
1
y
)
的最小值为
25
4
25
4

查看答案和解析>>

同步练习册答案