精英家教网 > 高中数学 > 题目详情

【题目】中国海军,正在以不可阻挡的气魄向深蓝进军。在中国海军加快建设的大背景下,国产水面舰艇吨位不断增大、技术日益现代化,特别是国产航空母舰下水,航母需要大量高素质航母舰载机飞行员。为此中国海军在全国9省9所优质普通高中进行海航班建设试点培育航母舰载机飞行员。2017年4月我省首届海军航空实验班开始面向全省遴选学员,有10000名初中毕业生踊跃报名投身国防,经过文化考试、体格测试、政治考核、心理选拔等过程筛选,最终招收50名学员。培养学校在关注学员的文化素养同时注重学员的身体素质,要求每月至少参加一次野营拉练活动(下面简称“活动”)并记录成绩.10月某次活动中海航班学员成绩统计如图所示:

(Ⅰ)根据图表,试估算学员在活动中取得成绩的中位数(精确到);

(Ⅱ)根据成绩从两组学员中任意选出两人为一组,若选出成绩分差大于,则称该组为“帮扶组”,试求选出两人为“帮扶组”的概率.

【答案】(1)见解析;(2)选出两人为帮扶组的概率.

【解析】

(1)根据中位数定义,根据概率列方程,即得结果,(2)先利用枚举法确定总事件数,再从中确定选出两人为帮扶组事件数,最后根据古典概型概率公式求结果.

(Ⅰ)由频率分布直方图可知:成绩在频率为,成绩在频率为,成绩在频率为,成绩在频率为,成绩在频率为

可知中位数落在组中,设其为,则,得

(Ⅱ)海航班共50名学员,成绩在组内有人,设为

成绩在组内有人,设为 ,从中选两人有共15种;

而“帮扶组”有8种,故选出两人为帮扶组的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)已知不过原点的直线与圆相切,且在轴,轴上的截距相等,求直线的方程;

(2)求经过原点且被圆截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的产品的生产线上随机抽取 件产品,测量这批产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:

(Ⅰ) 估计这批产品质量指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(Ⅱ) 若该种产品的等级及相应等级产品的利润(每件)参照以下规则(其中为产品质量指标值):

, 该产品定为一等品,企业可获利 200 元;

,该产品定为二等品,企业可获利 100 元;

,该产品定为三等品,企业将损失 500 元;

否则该产品定为不合格品,企业将损失 1000 元.

(ⅰ)若测得一箱产品(5 件)的质量指标数据分别为:76、85、93、105、112,求该箱产品的利润;

(ⅱ)设事件;事件;事件. 根据经验,对于该生产线上的产品,事件发生的概率分别为0.6826、0.9544、0.9974.根据以上信息,若产品预计年产量为10000件,试估计该产品年获利情况.(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年元旦假期,高三的8名同学准备拼车去旅游,其中班、班,班、班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学乘同一辆车的4名同学不考虑位置,其中班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有  

A. 18 B. 24 C. 48 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,角的始边与轴重合,终边与单位圆相交于点,若在第一象限,且

1)求点的坐标

2)将的终边逆时针旋转大小的角后与单位圆相交于点,求点的坐标

3)设,线段绕原点逆时针旋转角至线段,请用表示点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分:方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.

(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;

(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某协会对两家服务机构进行满意度调查,在两家服务机构提供过服务的市民中随机抽取了人,每人分别对这两家服务机构进行独立评分,满分均为分.整理评分数据,将分数以为组距分成组:,得到服务机构分数的频数分布表,服务机构分数的频率分布直方图:

定义市民对服务机构评价的“满意度指数”如下:

分数

满意度指数

0

1

2

(1)在抽样的人中,求对服务机构评价“满意度指数”为的人数;

(2)从在两家服务机构都提供过服务的市民中随机抽取人进行调查,试估计对服务机构评价的“满意度指数”比对服务机构评价的“满意度指数”高的概率;

(3)如果从服务机构中选择一家服务机构,以满意度出发,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为(  )

(A) (B)- (C) (D)-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足,若只在点(4,3)处取得最大值,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案