精英家教网 > 高中数学 > 题目详情
16.设数列{an}的前n项和为Sn.且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),则S2n+1=$\frac{4}{3}$[1-($\frac{1}{4}$)n+1].

分析 由题意可知:an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),则a2n+a2n+1=$\frac{1}{{2}^{2n}}$,因此S2n+1=a1+(a2+a3)+(a4+a5)+…+(a2n-2+a2n-1)+(a2n+a2n+1),可知S2n+1表示的是以1为首项、$\frac{1}{4}$为公比的等比数列的前n+1项和,由等比数列前n项和公式即可求得S2n+1

解答 解:依题意,S2n+1=a1+(a2+a3)+(a4+a5)+…+(a2n-2+a2n-1)+(a2n+a2n+1),
=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{2n}}$,
=1+$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{4}^{n}}$,
=$\frac{1×(1-\frac{1}{{4}^{n+1}})}{1-\frac{1}{4}}$=$\frac{4}{3}$[1-($\frac{1}{4}$)n+1],
故答案为:$\frac{4}{3}$[1-($\frac{1}{4}$)n+1].

点评 本题考查数列的通项及前n项和,等比数列前n项和公式,考查运算求解能力,考查分组法求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={x∈R|0<ax+1≤5},B={x∈R|$\frac{1}{2}$<x+1≤2}(a≠0)
(1)A,B能否相等?若能,求出实数a的值;若不能,试说明理由;
(2)若命题p:x∈A,命题q:x∈B,且p是q充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C1:y2=4x,过焦点F的直线l交C1于A,B两点.
(1)若线段AB的中点为M,求点M的轨迹方程;
(2)若△AOB的面积为S(O为坐标原点),求证:$\frac{{S}^{2}}{|AB|}$为定值,并求出此定值;
(3)以AB为直径的圆与y轴交于C,D两点,求|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=({2,3})$,$\overrightarrow b=({-2,4})$,则$({\overrightarrow a+\overrightarrow b})•({\overrightarrow a-\overrightarrow b})$=(  )
A.33B.-3C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.f(x)=x•ex-1的零点个数为1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知fn(x)=xn+bx+c(n∈N*),b,c∈R.
(1)设n=2时,若对任意x1,x2∈[-1,1],有|f2(x1)-f1(x2)|≤4,求b的取值范围;
(2)当b=1时,c=-1,n≥2时,fn(x)在区间($\frac{1}{2}$,1)内存在唯一零点且单调递增,设xn是fn(x)在($\frac{1}{2}$,1)内的零点,判断数列x2,x3,…,xn,…的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\root{3}{{\sqrt{a}}}$的化简结果是(  )
A.${a^{\frac{1}{3}}}$B.${a^{\frac{3}{2}}}$C.${a^{\frac{2}{3}}}$D.${a^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合$M=\{x|y={log_2}x\},N=\{y|y=\sqrt{x-1}\}$,那么M∩N=(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知g(x)=f(x)+|x-1|是奇函数,且f(-1)=1,则g(1)=-3.

查看答案和解析>>

同步练习册答案