精英家教网 > 高中数学 > 题目详情
10.已知z满足$({1-i})z=\sqrt{3}+i$(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.2D.1

分析 求出复数z,再求出复数的模即可.

解答 解:∵$({1-i})z=\sqrt{3}+i$,
∴z=$\frac{\sqrt{3}+i}{1-i}$=$\frac{(\sqrt{3}+i)(1+i)}{(1-i)(1+i)}$=$\frac{\sqrt{3}-1}{2}$+$\frac{\sqrt{3}+1}{2}$i,
故|z|=$\sqrt{{(\frac{\sqrt{3}-1}{2})}^{2}{+(\frac{\sqrt{3}+1}{2})}^{2}}$=$\sqrt{2}$,
故选:A.

点评 本题考查了复数求模问题,考查复数的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知过点(0,-2$\sqrt{3}$),斜率为$\sqrt{3}$的直线l过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,椭圆C的中心关于直线l的对称点在直线x=$\frac{{a}^{2}}{2}$上.
(1)求椭圆C的方程;
(2)过点E(-2,0)的直线m交椭圆C于点M、N,且满足tan∠MON=$\frac{4\sqrt{6}}{3\overrightarrow{OM}•\overrightarrow{ON}}$(O为坐标原点),求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:y=kx+m与椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$相交于A,P两点,与x轴,y轴分别相交于点N和点M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别做x轴的垂线,垂足分别为A1,B1
(1)若椭圆C的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点$D({1,\frac{3}{2}})$在椭圆C上,求椭圆C的方程;
(2)当$k=\frac{1}{2}$时,若点N平分线段A1B1,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{4}$-y2=1的右顶点重合,则p=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若q>0,命题甲:“a,b为实数,且|a-b|<2q”;命题乙:“a,b为实数,满足|a-2|<q,且|b-2|<q”,则甲是乙的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线${x^2}-\frac{y^2}{b^2}=1({b>0})$,以原点O为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,这四点围成的四边形面积为b,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.3D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时);
高一年级77.588.59
高二年级78910111213
高三年级66.578.51113.51718.5
(Ⅰ)试估计该校高三年级的教师人数;
(Ⅱ)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级班选出的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;
(Ⅲ)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8,9,10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为$\overline{x_1}$,表格中的数据平均数记为$\overline{x_0}$,试判断$\overline{x_0}$与$\overline{x_1}$的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以双曲线$\frac{x^2}{4}-\frac{y^2}{12}=-1$的焦点为顶点,顶点为焦点的椭圆方程是(  )
A.$\frac{x^2}{4}+\frac{y^2}{m}=1$B.$\frac{x^2}{m}-\frac{y^2}{2}=1$C.$\frac{x^2}{16}+\frac{y^2}{4}=1$D.$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若2a=5b=10,则$\frac{1}{a}$+$\frac{1}{b}$的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案