精英家教网 > 高中数学 > 题目详情
12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(2,0),且离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)已知O为坐标原点,过椭圆C的右顶点A作直线l与圆x2+y2=$\frac{8}{5}$相切并交椭圆C于另一点B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

分析 (1)由已知得到c,结合离心率求得a,再由隐含条件得b,则椭圆方程可求;
(2)求出A的坐标,设出直线l的方程,利用直线和圆相切求得k,联立直线方程和椭圆方程,利用根与系数的关系求得$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

解答 解:(1)由题意,c=2,∵离心率为$\frac{1}{2}$,可得a=2c=4.
∴b2=a2-c2=12.
∴椭圆C的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$;
(2)由(1)知,椭圆的右顶点为A(4,0),设直线l的方程为y=k(x-4),
∵直线l与圆x2+y2=$\frac{8}{5}$相切,∴$\frac{|4k|}{\sqrt{1+{k}^{2}}}=\sqrt{\frac{8}{5}}$,即9k2=1,得k=$±\frac{1}{3}$.
联立y=$\frac{1}{3}(x-4)$与$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$,得31x2-32x-368=0.
设B(x0,y0),则由根与系数的关系得:$4{x}_{0}=-\frac{368}{31}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=$4{x}_{0}=-\frac{368}{31}$.
同理,当直线为y=-$\frac{1}{3}(x-4)$时,可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=$4{x}_{0}=-\frac{368}{31}$.
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=$-\frac{368}{31}$.

点评 本题考查椭圆的简单性质,考查了直线与圆位置关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)与y轴的交点为(0,1),且图象上两对称轴之间的最小距离为$\frac{π}{2}$,则使f(x+t)-f(-x+t)=0成立的|t|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,已知${a_1}+2{a_2}+3{a_3}+…+n{a_n}=(n-1){S_n}+2n(n∈{N^*})$.
(1)求证:数列{Sn+2}是等比数列;
(2)设${b_n}=\frac{8n-14}{{{S_n}+2}}$,数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.阅读下列程序框图,若输入的x为16,则输出的y的值为(  )
A.0B.$-\frac{2}{3}$C.$-\frac{8}{9}$D.$-\frac{26}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为$2\sqrt{3}$,则a等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.条件p:x<-1或x>1,条件q:x<-2,则p是q的(  )
A.充分但不必要条件B.充分且必要条件
C.必要但不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,则下列命题为真命题的是
①若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角60°;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在非零实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$;
④若存在非零实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$;
⑤若$\overrightarrow{a}$与$\overrightarrow{b}$共线且同向,则|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|.
其中的正确的结论是③⑤(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下面的几个命题:
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$共线;       
②长度不相等、方向相反的两向量一定是共线向量;
③若$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|$>|\overrightarrow{b}|$且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}>\overrightarrow{b}$;   
④由于$\overrightarrow{0}$方向不定,故$\overrightarrow{0}$不能与任何向量平行;
⑤对于任意向量$\overrightarrow{a}$,$\overrightarrow{b}$有|$\overrightarrow{a}$|-|$\overrightarrow{b}$|≤|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
其中正确命题的序号是:②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}\right.$,则f(log25)=$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案