精英家教网 > 高中数学 > 题目详情
10.设lg2=a,则log225=(  )
A.$\frac{1-a}{a}$B.$\frac{a}{1-a}$C.$\frac{2(1-a)}{a}$D.$\frac{2a}{1-a}$

分析 根据对数的运算性质和换底公式即可求出.

解答 解:lg2=a,
则log225=$\frac{lg25}{lg2}$=$\frac{lg\frac{100}{4}}{lg2}$=$\frac{lg100-lg4}{lg2}$=$\frac{2-2a}{a}$,
故选:C.

点评 本题考查了对数的运算性质和换底公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.不等式|x+2|>2的解集为(  )
A.B.(0,+∞)C.(-∞,-4)∪(0,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-m+3(m∈N)为偶函数且f(3)<f(5),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的角A,B,C的对边分别为a,b,c,已知A,B,C成等差数列.
(1)若a,b,c成等比数列,求A,B,C;
(2)若$\overrightarrow{BA}•\overrightarrow{BC}=12$,b=2$\sqrt{7}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,过抛物线y2=x上一点A(4,2)作倾斜角互补的两条直线AB,AC,交抛物线于B,C两点,求证:直线BC的斜率是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若关于x的不等式$\frac{x-a}{x+1}$>0的解集为(-∞,-1)∪($\frac{1}{2}$,+∞),则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列式子中:①lg(3+2$\sqrt{2}$)-lg(3-2$\sqrt{2}$)=0;
②lg(10+$\sqrt{99}$)•lg(10-$\sqrt{99}$)=0;
③log${\;}_{\sqrt{n+1}-\sqrt{n}}$($\sqrt{n+1}$+$\sqrt{n}$)=-1(n∈N*
④$\frac{lga}{lgb}$=lg(a-b).
其中正确的有③. (填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知lga、lgb是方程x2-4x+1=0的两个根,则lg2$\frac{a}{b}$的值是(  )
A.14B.15C.13D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的有(  )
①方向相同的向量叫相等向量;
②零向量的长度为0;
③共线向量是在同一条直线上的向量;
④零向量是没有方向的向量;
⑤共线向量不一定相等;
⑥平行向量方向相同.
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案