分析 (1)由已知数列递推式可得${a_{n+1}}+\frac{1}{2}=3({a_n}+\frac{1}{2})$,进一步得到$\left\{{{a_n}+\frac{1}{2}}\right\}$是首项为$\frac{3}{2}$,公比为3的等比数列.求出等比数列的通项公式,可得{an}的通项公式;
(2)把{an}的通项公式代入bn=2nan+n,利用错位相减法求数列{bn}的前n项和Sn.
解答 证明:(1)由an+1-3an=1,得an+1=3an+1,得${a_{n+1}}+\frac{1}{2}=3({a_n}+\frac{1}{2})$,
又${a_1}+\frac{1}{2}=\frac{3}{2}$≠0,
∴$\left\{{{a_n}+\frac{1}{2}}\right\}$是首项为$\frac{3}{2}$,公比为3的等比数列.
∴${a_n}+\frac{1}{2}=\frac{3^n}{2}$,则${a}_{n}=\frac{{3}^{n}-1}{2}$.
因此{an}的通项公式为${a_n}=\frac{{{3^n}-1}}{2}$;
解:(2)由(1)得${a_n}=\frac{{{3^n}-1}}{2}$,
∴bn=2nan+n=n•3n.
Sn=1•31+2•32+3•33+…+n•3n,①
3Sn=1•32+2•33+…+(n-1)•3n+n•3n+1.②
①-②得-2Sn=31+32+…+3n-n•3n+1
=$\frac{3(1-{3}^{n})}{1-3}$-n•3n+1=$\frac{{3}^{n+1}-3}{2}-n•{3}^{n+1}$.
∴Sn=$\frac{(2n-1)•{3}^{n+1}+3}{4}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (1,+∞) | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 生产时间 | [60,65) | [65,70) | [70,75) | [75,80) |
| 人数 | 30 | 40 | 20 | 10 |
| 生产时间 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) |
| 人数 | 10 | 25 | 20 | 30 | 15 |
| 生产时间小于70分钟 | 生产时间不小于70分钟 | 合计 | |
| A组工人 | a= | b= | |
| B组工人 | c= | d= | |
| 合计 | n= |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com