精英家教网 > 高中数学 > 题目详情
19.已知复数z=$\frac{{\sqrt{3}+i}}{{1+{i^3}}}$,其中i为虚数单位,则|z|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

分析 利用复数的运算法则、复数模的计算公式即可得出.

解答 解:复数z=$\frac{{\sqrt{3}+i}}{{1+{i^3}}}$=$\frac{\sqrt{3}+i}{1-i}$=$\frac{(\sqrt{3}+i)(1+i)}{(1-i)(1+i)}$=$\frac{\sqrt{3}-1}{2}$+$\frac{1+\sqrt{3}}{2}$i,
则|z|=$\sqrt{(\frac{\sqrt{3}-1}{2})^{2}+(\frac{1+\sqrt{3}}{2})^{2}}$=$\sqrt{2}$.
故选:C.

点评 本题考查了复数的运算法则、复数模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若幂函数f(x)=mxα的图象经过点$A(\frac{1}{4},\frac{1}{2})$,则它在点A处的切线方程是4x-4y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{2}{x^2}-x+alnx,a∈R$.
(Ⅰ)若a=-2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当$0<a<\frac{2}{9}$,函数f(x)的两个极值点为x1,x2,且x1<x2,求证:$\frac{{f({x_1})}}{x_2}>-\frac{5}{12}-\frac{1}{3}ln3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=2sin(2x+$\frac{π}{4}$)的对称轴是x=$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=|x+2|+|x-a|的图象关于直线x=1对称,则a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.棱长为1,各面都为等边三角形的四面体内有一点P,由点P向各面作垂线,垂线段的长度分别为d1,d2,d3,d4,则d1+d2+d3+d4=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知正方体ABCD-A${\;}_{{1}_{\;}}$B1C1D1,BD,BC1,B1D1,A1C1分别为各个面的对角线;
(1)求证:A1C1⊥平面BB1D1D;
(2)求异面直线B1D1与BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题正确的是(  )
A.a>b⇒ac2>bc2B.a<b<0⇒a2b>b3
C.$\frac{a}{b}$>1⇒a>b且b>0D.a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简:($\frac{5}{6}$a${\;}^{\frac{1}{3}}$•b-2)(-3a${\;}^{-\frac{1}{2}}$•b-1)÷(4a${\;}^{\frac{2}{3}}$•b-3)${\;}^{\frac{1}{2}}$.

查看答案和解析>>

同步练习册答案