精英家教网 > 高中数学 > 题目详情
9.化简:($\frac{5}{6}$a${\;}^{\frac{1}{3}}$•b-2)(-3a${\;}^{-\frac{1}{2}}$•b-1)÷(4a${\;}^{\frac{2}{3}}$•b-3)${\;}^{\frac{1}{2}}$.

分析 根据指数幂的运算性质计算即可.

解答 解:原式=($\frac{5}{6}$a${\;}^{\frac{1}{3}}$•b-2)(-3a${\;}^{-\frac{1}{2}}$•b-1)÷2a${\;}^{\frac{1}{3}}$•b${\;}^{-\frac{3}{2}}$
=$\frac{5}{6}$×(-3)×$\frac{1}{2}$a${\;}^{\frac{1}{3}-\frac{1}{2}-\frac{1}{3}}$b${\;}^{-2-1+\frac{3}{2}}$,
=-$\frac{5}{4}$a${\;}^{-\frac{1}{2}}$b${\;}^{-\frac{3}{2}}$.

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{{\sqrt{3}+i}}{{1+{i^3}}}$,其中i为虚数单位,则|z|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某射击俱乐部将要举行移动靶射击比赛,比赛规则是每位选手可以选择在A 区射击3次或选择在B区射击2次,在A区每射中一次得3分,射不中得0分;在B区每射中一次得2分,射不中得0分.已知参赛选手甲在A区和B区每次射中移动靶的概率分别为$\frac{1}{3}$和p(0<p<1).
(1)若选手甲在A区射击,求选手甲至少得3分的概率
(2)我们把在A,B两区射击得分的数学期望较高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a=(-1,1)$,$\overrightarrow b=(3,m)$,$\overrightarrow a∥(\overrightarrow a+\overrightarrow b)$,则m=(  )
A.2B.-2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanα=2,求$\frac{co{s}^{4}α+si{n}^{2}αco{s}^{2}α}{3co{s}^{2}α-si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
(1)写出2×2列联表;  (2)判断产品是否合格与设备改造是否有关,说明理由.
 P(K2≥k) 0.0500.010 0.001 
 k 3.841 6.635 10.828
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
数据支持:(65×49-36×30)2=4431025   101×79×85×95=64430825.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.

(1)若该人到达后停留2天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;
(2)若该人到达后停留3天(到达当日算1天),设X是此人停留期间空气重度污染的天数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间[0,π]上随机地取一个x,则事件“$0≤sinx≤\frac{{\sqrt{2}}}{2}$”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB
(1)求角B的大小;
(2)若b=$\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案