分析 (1)由正弦定理化简已知可得:sinBsinA=$\sqrt{3}$sinAcosB,得tanB=$\sqrt{3}$,即可求B的值.
(2)利用及余弦定理,基本不等式可得(a+c)2≤12,再根据三角形两边之和大于第三边,从而可求三角形周长的范围
解答 解:(1)∵bsinA=$\sqrt{3}$acosB,
由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,即得tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$
(2)b=$\sqrt{3}$,由余弦定理,得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac
≥(a+c)2-3($\frac{a+c}{2}$)2=$\frac{1}{4}$(a+c)2,当且仅当a=c时,等号成立
∴(a+c)2≤12,
∴a+c≤2$\sqrt{3}$,
∵a+c>b=$\sqrt{3}$
∴2$\sqrt{3}$<a+c+b≤3$\sqrt{3}$,
∴△ABC周长的取值范围为(2$\sqrt{3}$,3$\sqrt{3}$].
点评 本题主要考查了正弦定理,余弦定理,基本不等式,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{37}{42}$ | B. | $\frac{17}{42}$ | C. | $\frac{5}{14}$ | D. | $\frac{17}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
| i | 1 | 2 | 3 | 4 | 5 | 合计 |
| xi | 2 | 3 | 4 | 5 | 6 | 20 |
| yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 | 25 |
| xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42 | 112.3 |
| ?${x_i}^2$ | 4 | 9 | 16 | 25 | 36 | 90 |
| ?$\overline{x}=4$;?$\overline{y}=5$;?$\sum_{i=1}^n{{x_i}^2}=90$;$\sum_{i=1}^n{{x_i}{y_i}}=112.3$ | ||||||
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com