精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x+1,则当x<0时,f(x)=x3+x-1.

分析 由x<0知-x>0,得出f(-x)解析式,再由f(x)是奇函数得出f(x)=-f(-x),可以求得.

解答 解:当x<0时,有-x>0,∴f(-x)=(-x)3+(-x)+1=-x3-x+1;
又∵f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∴-f(x)=-x3-x+1,∴f(x)=x3+x-1;
即当x<0时,f(x)=x3+x-1;
故答案为:x3+x-1.

点评 本题考查了函数的奇偶性,利用奇偶性求函数的解析式问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.一物体以速度v=(3t2+2t)m/s做直线运动,则它在t=0s到t=3s时间段内的位移是(  )
A.31mB.36mC.38mD.40m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x+$\frac{1}{2}$)为奇函数,g(x)=f(x)+1,则g(x)+g(1-x)=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是16π,若使△ABC绕直线AB旋转一周,则所形成的几何体的侧面展开图面积是15π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求x<0时f(x)的解析式;
(2)问是否存在正数a,b,当x∈[a,b]时,g(x)=f(x),且g(x)的值域为[$\frac{a}{2}$,$\frac{b}{2}$]?若存在,求出所有的a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式ax2+bx+c>0的解集为-$\frac{1}{2}$<x<1,求下列关于x不等式约解集:
(1)cx2+bx+a<0;
(2)ax2-bx+c<0;
(3)cx2-bx+a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若${∫}_{1}^{a}$$\frac{1}{x}$dx=1(a>1),则a=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a,b为方程x2-6x+4=0的两根,且a>b.
(1)证明:a>0,b>0;
(2)求$\frac{{\sqrt{a}-\sqrt{b}}}{{\sqrt{a}+\sqrt{b}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知θ∈(0,$\frac{π}{2}$),则y═$\frac{1}{si{n}^{2}θ}+\frac{9}{co{s}^{2}θ}$的最小值为(  )
A.6B.10C.12D.16

查看答案和解析>>

同步练习册答案