精英家教网 > 高中数学 > 题目详情
2.一物体以速度v=(3t2+2t)m/s做直线运动,则它在t=0s到t=3s时间段内的位移是(  )
A.31mB.36mC.38mD.40m

分析 利用定积分的物理意义解答即可.

解答 解:由题意物体在t=0s到t=3s时间段内的位移是:${∫}_{0}^{3}(3{t}^{2}+2t)dt=({t}^{3}+{t}^{2}){|}_{0}^{3}$=36;
故选:B.

点评 本题考查了定积分的物理意义;变速直线运动的物体在时间段内的位移可以利用定积分计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,PA=4,∠DAB=∠ABC=90°,E是CD的中点.
(1)求异面直线BC与PD所成角的正切值;
(2)求证:CD⊥PE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a的值;
(Ⅱ)求曲线y=f(x)与直线y=x-2交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设等差数列{an}满足a3=5,a10=-9.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn},则max{min{x+1,x2-x+1,-x+6}}=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.${∫}_{-2}^{2}$(x2sinx+$\sqrt{16-{4x}^{2}}$)dx=4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(5-a)x+b的递减区间是(1,2),则实数a的值或取值范围是a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}}$),x∈R
(1)列表并画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x+1,则当x<0时,f(x)=x3+x-1.

查看答案和解析>>

同步练习册答案