精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}}$),x∈R
(1)列表并画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)求f(x)的单调递减区间.

分析 (1)描出五个关键点并光滑连线,得到一个周期的简图;
(2)利用正弦函数的单调递减区间,即可得出结论.

解答 解:(1)列表如下:

x$\frac{π}{2}$$\frac{3π}{2}$$\frac{5π}{2}$$\frac{7π}{2}$$\frac{9π}{2}$
$\frac{1}{2}x-\frac{π}{4}$0$\frac{π}{2}$π$\frac{3π}{2}$
$3sin({\frac{1}{2}x-\frac{π}{4}})$030-30
….(3分)
描出五个关键点并光滑连线,得到一个周期的简图,图象如下:

….(6分)
(2)由题意,$\frac{π}{2}+2kπ≤\frac{x}{2}-\frac{π}{4}≤\frac{3π}{2}+2kπ,k∈Z$$\frac{3π}{2}+4kπ≤x≤\frac{7π}{2}+4kπ,k∈Z$
所以,函数的单调递减区间为:$[{\frac{3π}{2}+4kπ,\frac{7π}{2}+4kπ}],({k∈Z})$…(12分)

点评 本题主要考查三角函数的图象的作法,考查了正弦函数的对称性,单调性,利用五点法是解决三角函数图象的基本方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.命题“?n∈N*,f(n)≤n”的否定形式是(  )
A.?n∈N*,f(n)>nB.?n∉N*,f(n)>nC.?n∈N*,f(n)>nD.?n∉N*,f(n)>n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一物体以速度v=(3t2+2t)m/s做直线运动,则它在t=0s到t=3s时间段内的位移是(  )
A.31mB.36mC.38mD.40m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A(-1,2),B(0,-2),若点D在线段AB上,且2|${\overrightarrow{AD}}$|=3|${\overrightarrow{BD}}$|,则点D的坐标为$(-\frac{2}{5},-\frac{2}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{{log}_{2}(x-1),x>1}\end{array}\right.$,g(x)=x2-2x+2m-1,下列叙述中正确的有①②④
①函数y=f(f(x))有4个零点;
②若函数y=g(x)在(0,3)有零点,则-1<m≤1;
③当m≥-$\frac{1}{8}$时,函数y=f(x)+g(x)有2个零点;
④若函数y=f(g(x))-m有6个零点则实数m的取值范围是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,a3+a7=2,数列{bn}是等比数列,且a5=b5,则b4•b6=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x+$\frac{1}{2}$)为奇函数,g(x)=f(x)+1,则g(x)+g(1-x)=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是16π,若使△ABC绕直线AB旋转一周,则所形成的几何体的侧面展开图面积是15π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a,b为方程x2-6x+4=0的两根,且a>b.
(1)证明:a>0,b>0;
(2)求$\frac{{\sqrt{a}-\sqrt{b}}}{{\sqrt{a}+\sqrt{b}}}$的值.

查看答案和解析>>

同步练习册答案