精英家教网 > 高中数学 > 题目详情
1.已知⊙C:x2+y2-6x+5=0,点A、B在⊙C上,且AB=2$\sqrt{3}$,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$|的最大值为8.

分析 利用AB中点M去研究,先通过坐标关系,将$\overrightarrow{OA}$+$\overrightarrow{OB}$  转化为$\overrightarrow{OM}$,用根据AB=2$\sqrt{3}$得到M点的轨迹,由图形的几何特征,求出$\overrightarrow{OM}$模的最大值,得到本题答案.

解答 解:设A(x1,y1),B(x2,y2),AB中点M(x′,y′).
∵x′=$\frac{{x}_{1}+{x}_{2}}{2}$,y′=$\frac{{y}_{1}+{y}_{2}}{2}$
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2)=2$\overrightarrow{OM}$,
∵圆C:x2+y2-6x+5=0,
∴(x-3)2+y2=4,圆心C(3,0),半径CA=2.
∵点A,B在圆C上,|AB|=2$\sqrt{3}$,
∴|CA|2-|CM|2=($\frac{1}{2}$|AB|)2
即|CM|=1.
点M在以C为圆心,半径r=1的圆上.
∴|OM|≤|OC|+r=3+1=4.
∴|$\overrightarrow{OM}$|≤4,
|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≤8.
故答案为:8.

点评 本题考查了数形结合思想和函数方程的思想,可利用AB中点M去研究,先通过坐标关系,将$\overrightarrow{OA}$+$\overrightarrow{OB}$  转化为$\overrightarrow{OM}$是解题的关键,考查向量的几何意义,转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在复平面内,复数z=2+i对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sinθ=$\frac{3}{5}$,且θ∈(0,$\frac{π}{2}}$),则$\frac{sin2θ}{{{{cos}^2}θ}}$的值等于(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.-$\frac{3}{2}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知A={α|2cos2α-3cosα+1≤0,α∈R},B={α|2sinα>1,α∈R},
(1)求集合A∩B;
(2)若对任意x∈A∩B,都有$cos2x-4sin({\frac{π}{4}+\frac{x}{2}})sin({\frac{π}{4}-\frac{x}{2}})+m>0$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C的对边分别为a,b,c,c=2acosB,则△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$x∈({-\frac{π}{2},\frac{π}{2}}),sinx+cosx=\frac{1}{5}$,则tan2x为(  )
A.$\frac{7}{24}$B.$-\frac{7}{24}$C.$\frac{24}{7}$D.$-\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为研究某市高中教育投资情况,现将该市某高中学校的连续5年的教育投资数据进行统计,已知年编号x与对应教育投资y(单位:百万元)的抽样数据如下表:
单位编号x12345
投资额y3.33.63.94.44.8
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析5年来的该高中教育投资变化情况,预测该高中下一年的教育投资约为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(参考公式:回归直线方程式$\hat y=\hat bx+\hat a$,其中$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y})}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}},\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A、B、C的坐标分别为A(3,0),B(0,3),C(cosα,sinα),α∈($\frac{π}{2}$,$\frac{3π}{2}$).若$\overrightarrow{OC}$∥$\overrightarrow{AB}$,O为坐标原点,则角α的值是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等比数列{an}中,前n项和为Sn,已知S1,S3,S2成等差数列,则{an}的公比q=$-\frac{1}{2}$;若a1-a3=3,则Sn=$\frac{8}{3}$[1-($-\frac{1}{2}$)n].

查看答案和解析>>

同步练习册答案