【题目】(本小题满分10分)【选修4-5:不等式选讲】
已知函数
.
(Ⅰ)求
的解集;
(Ⅱ)设函数
,
,若
对任意的
都成立,求实数k的取值范围.
【答案】(1)
或
;(2)
.
【解析】试题分析:本题主要考查绝对值不等式的解法、函数图象、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用配方过程开方,得到绝对值不等式,利用零点分段法去掉绝对值符号,转化为不等式组,解不等式;第二问,将
对任意的
都成立,转化为
,通过画分段函数图象和直线的图象,通过图形的位置关系得到结论.
试题解析:(Ⅰ)
,
∴
,即
, (2分)
∴
① 或
② 或
③
解得不等式①:
;②:无解;③:
,
所以
的解集为
或
. (5分)
(Ⅱ)
即
的图象恒在
图象的上方, (6分)
可以作出
的图象,
而
图象为恒过定点
,且斜率
变化的一条直线,
作出函数
图象如图3, (8分)
![]()
其中
,∴
,
由图可知,要使得
的图象恒在
图象的上方,
实数
的取值范围应该为
. (10分)
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=
,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】六个面都是平行四边形的四棱柱称为平行六面体.已知在平行四边形ABCD中(如图1),有AC2+BD2=2(AB2+AD2),则在平行六面体ABCD﹣A1B1C1D1中(如图2),AC12+BD12+CA12+DB12等于( ) ![]()
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥
中,侧面
,
是全等的直角三角形,
是公共的斜边且
,
,另一侧面
是正三角形.
![]()
(1)求证:
;
(2)若在线段
上存在一点
,使
与平面
成
角,试求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数中,表示同一函数的是( )
A.f(x)=x+1,g(x)=
﹣1
B.f(x)=|x|,g(x)=(
)2
C.f(x)=2log2x,g(x)=log2x2
D.f(x)=x,g(x)=log22x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命题p:log2[g(x)]≥1是假命题.求x的取值范围;
(2)若命题q:x∈(﹣∞,3).命题r:x满足f(x)<0或g(x)<0为真命题.¬r是¬q的必要不充分条件,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com