精英家教网 > 高中数学 > 题目详情
12.某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价($\frac{m+n}{2}$)%;方案(Ⅳ)一次性提价(m+n)%,已知m>n>0,那么四种提价方案中,提价最多的是(  )
A.B.C.D.

分析 设单价为1,那么方案(Ⅰ)售价为:1×(1+m%)(1+n%)=(1+m%)(1+n%);方案(Ⅱ)提价后的价格是:(1+n%)(1+m%));(Ⅲ)提价方案提价后的价格是:(1+$\frac{m+n}{2}$%)2;方案(Ⅳ)提价后的价格是1+(m+n)%显然甲、乙两种方案最终价格是一致的,因而只需比较(1+m%)(1+n%)与(1+$\frac{m+n}{2}$%)2的大小.

解答 解:依题意得:设单价为1,那么方案(Ⅰ)售价为:1×(1+m%)(1+n%)=(1+m%)(1+n%);
方案(Ⅱ)提价后的价格是:(1+n%)(1+m%));
(1+m%)(1+n%)=1+m%+n%+m%•n%=1+(m+n)%+m%•n%;
(Ⅲ)提价后的价格是(1+$\frac{m+n}{2}$%)2=1+(m+n)%+($\frac{m+n}{2}$%)2
方案(Ⅳ)提价后的价格是1+(m+n)%
所以只要比较m%•n%与($\frac{m+n}{2}$%)2的大小即可
∵($\frac{m+n}{2}$%)2-m%•n%=($\frac{m-n}{2}$%)2≥0
∴($\frac{m+n}{2}$%)2≥m%•n%
即(1+$\frac{m+n}{2}$%)2>(1+m%) (1+n%)
因此,方案(Ⅲ)提价最多.
故选C.

点评 解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.需用到的知识点为:(a-b)2≥0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是递增的等比数列,a2+a4=10,a1.a5=16,则数列{an}的前6项和等于63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=-x+sinx,命题p:?x∈(0,π),f(x)<0,则  (  )
A.p是真命题,¬p:?x∈(0,π),f(x)≥0B.p是假命题,¬p:?x∈(0,π),f(x)≥0
C.p是假命题,¬p:?x∈(0,π),f(x)≥0D.p是真命题,¬p:?x∈(0,π),f(x)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象(  )
A.向左平移$\frac{2π}{3}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{2π}{3}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,则关于x的不等式f(2x+3)+f(x)>0的解集是(  )
A.(-3,+∞)B.(-∞,-3)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关于命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.若命题p:?n∈N,2n>1000,则¬p:?n∈N,2n>1000
D.命题“?x∈(-∞,0),2x<3x”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设不等式组$\left\{\begin{array}{l}{x≥1}\\{x-y≤0}\\{x+y≤4}\end{array}\right.$,表示的平面区域为M,若直线y=kx-2上存在M内的点,则实数k的取值范围是(  )
A.[1,3]B.(-∞,1]∪[3,+∞)C.[2,5]D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xe-x+(x-2)ex-a
(1)当a=0时,求f(x)的单调区间;
(2)当a>2时,若ex•f(x)≥x2-2x+1对任意x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=x-alnx+a+\frac{b}{x}$.
(1)若曲线y=f(x)在点(1,f(1))处的切线过点(4,-2),且x=2时,y=f(x)有极值,求实数a,b的值;
(2)若函数g(x)=x•f(x)在区间$[\frac{1}{e},{e^2}]$上单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案