精英家教网 > 高中数学 > 题目详情
20.函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象(  )
A.向左平移$\frac{2π}{3}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{2π}{3}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由$(\frac{π}{3},2)$在函数图象上,结合φ的范围求出φ的值,可得函数的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:A=2,
∵$\frac{T}{2}=\frac{π}{3}-(-\frac{π}{6})=\frac{π}{2}$,
∴T=π=$\frac{2π}{ω}$,解得:ω=2,可得:f(x)=2cos(2x+φ),
将$(\frac{π}{3},2)$代入得:$cos(\frac{2π}{3}+φ)=1$,
∵-π<φ<0,
∴$φ=-\frac{2π}{3},f(x)=2cos(2x-\frac{2π}{3})=2cos2(x-\frac{π}{3})$,
故可将函数y=f(x)的图象向左平移$\frac{π}{3}$个单位长度得到l的图象.
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax3+(a-1)x2-x+2(0≤x≤1)在x=1处取得最小值,则实数a的取值范围是(  )
A.a≤0B.0$≤a≤\frac{3}{5}$C.a≤$\frac{3}{5}$D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sinωx(ω>0),对任意实数x有$f(x-\frac{1}{2})=f(x+\frac{1}{2})$,且$f(-\frac{1}{4})=a$,那么$f(\frac{9}{4})$=(  )
A.aB.$-\frac{1}{4}a$C.$\frac{1}{4}a$D.-a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某程序框图如图所示,运行相应该程序,那么输出的k的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设${({2{x^2}+1})^5}={a_0}+{a_1}{x^2}+{a_2}{x^4}+…+{a_5}{x^{10}},则{a_3}$的值为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin(2x+$\frac{π}{6}$),如果x1、x2∈(-$\frac{π}{12}$,$\frac{5π}{12}$),且满足x1≠x2,f(x1)=f(x2),则f(x1+x2)=(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价($\frac{m+n}{2}$)%;方案(Ⅳ)一次性提价(m+n)%,已知m>n>0,那么四种提价方案中,提价最多的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{lnx}{x}-\frac{k}{x}$(k∈R)的最大值为h(k).
(1)若k≠1,试比较h(k)与$\frac{1}{{{e^{2k}}}}$的大小;
(2)是否存在非零实数a,使得$h(k)>\frac{k}{ae}$对k∈R恒成立,若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)满足f(x)=x(f′(x)-lnx),且f($\frac{1}{e}$)=$\frac{1}{e}$,则ef(ex)<f′($\frac{1}{e}$)+1的解集是(  )
A.(-∞,-1)B.(-1,+∞)C.(0,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

同步练习册答案