精英家教网 > 高中数学 > 题目详情
8.某程序框图如图所示,运行相应该程序,那么输出的k的值是4.

分析 模拟执行程序框图,依次写出每次循环得到的S,k的值,当S=2059时不满足条件S<100,退出循环,输出k的值为4.

解答 解:模拟执行程序框图,可得
k=0,S=0
满足条件S<100,S=1,k=1
满足条件S<100,S=3,k=2
满足条件S<100,S=11,k=3
满足条件S<100,S=2059,k=4
不满足条件S<100,退出循环,输出k的值为4.
故答案为:4.

点评 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知x,y均为正实数,且$\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{6}$,则x+y的最小值为(  )
A.24B.32C.20D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x、y满足不等式组$\left\{\begin{array}{l}y≥1\\ x-y≥0\\ x+2y-6≤0\end{array}\right.$时,目标函数z=2x+y的最大值为(  )
A.3B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在复平面内,复数z=$\frac{3+5i}{1+i}$(i为虚数单位)对应点的坐标是(  )
A.(1,4)B.(4,-1)C.(4,1)D.(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=-x+sinx,命题p:?x∈(0,π),f(x)<0,则  (  )
A.p是真命题,¬p:?x∈(0,π),f(x)≥0B.p是假命题,¬p:?x∈(0,π),f(x)≥0
C.p是假命题,¬p:?x∈(0,π),f(x)≥0D.p是真命题,¬p:?x∈(0,π),f(x)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.阅读材料:空间直角坐标系O-xyz中,过点P(x0,y0,z0)且一个法向量为$\overrightarrow{n}$=(a,b,c)的平面α的方程为a(x-x0)+b(y-y0)+c(z-z0)=0;过点P(x0,y0,z0)且个方向向量为$\overrightarrow{d}$=(u,v,w)(uvw≠0)的直线l的方程为$\frac{x-{x}_{0}}{u}$=$\frac{y-{y}_{0}}{v}$=$\frac{z-{z}_{0}}{w}$,阅读上面材料,并解决下面问题:已知平面α的方程为3x-5y+z-7=0,直线l是两个平面x-3y+7=0与4y+2z+1=0的交线,则直线l与平面α所成角的大小为(  )
A.arcsin$\frac{\sqrt{10}}{35}$B.arcsin$\frac{\sqrt{7}}{5}$C.arcsin$\frac{\sqrt{7}}{15}$D.arcsin$\frac{\sqrt{14}}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象(  )
A.向左平移$\frac{2π}{3}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{2π}{3}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关于命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.若命题p:?n∈N,2n>1000,则¬p:?n∈N,2n>1000
D.命题“?x∈(-∞,0),2x<3x”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;
(2)若对任意x>0,恒有|f(x)|≥|g(x)|成立,求实数n的值及实数m的最大值.

查看答案和解析>>

同步练习册答案