精英家教网 > 高中数学 > 题目详情
18.已知x,y均为正实数,且$\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{6}$,则x+y的最小值为(  )
A.24B.32C.20D.28

分析 变形利用基本不等式的性质即可得出.

解答 解:∵x,y均为正实数,且$\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{6}$,
则x+y=(x+2+y+2)-4=$6(\frac{1}{x+2}+\frac{1}{y+2})$(x+2+y+2)-4=6$(2+\frac{x+2}{y+2}+\frac{y+2}{x+2})$-4≥$6×(2+2\sqrt{\frac{x+2}{y+2}•\frac{y+2}{x+2}})$-4=20,
当且仅当x=y=10时取等号.
∴x+y的最小值为20.
故选:C.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知向量$\vec a=(sinθ,-\frac{2}{5})$与向量$\vec b=(1,2cosθ)$
(1)若$\vec a$与$\vec b$互相垂直,求tanθ的值;       
(2)若$\vec a∥\vec b$,求$cos(\frac{π}{2}+2θ)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.欧拉(Leonhard Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式eix=cosx+isinx(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占用非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e-4i表示的复数在复平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果直线ax+by+1=0被圆x2+y2=25截得的弦长等于8,那么$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$的最小值等于27+$18\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-2x-3>0},B={x|lg(x-2)≤0},则(∁RA)∪B=(  )
A.(-1,3)B.(2,3)C.(2,3]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦点的直线$x+y-\sqrt{3}=0$交M于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{2}$,则椭圆M的方程为$\frac{x^2}{6}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax3+(a-1)x2-x+2(0≤x≤1)在x=1处取得最小值,则实数a的取值范围是(  )
A.a≤0B.0$≤a≤\frac{3}{5}$C.a≤$\frac{3}{5}$D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}满足an+1=(2|sin$\frac{nπ}{2}$|-1)an+2n,则数列{an}的前100项和为(  )
A.5050B.5100C.9800D.9850

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某程序框图如图所示,运行相应该程序,那么输出的k的值是4.

查看答案和解析>>

同步练习册答案