精英家教网 > 高中数学 > 题目详情
9.欧拉(Leonhard Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式eix=cosx+isinx(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占用非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e-4i表示的复数在复平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 e-4i=cos(-4)+isin(-4),再利用诱导公式与三角函数求值即可得出.

解答 解:e-4i=cos(-4)+isin(-4),∵cos(-4)=cos[π+(4-π)]=-cos(4-π)<0,sin(-4)=-sin[π+(4-π)]=sin(4-π)>0,
∴e-4i表示的复数在复平面中位于第二象限.
故选:B.

点评 本题考查了欧拉公式、诱导公式与三角函数求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]时函数f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$对任意x∈(0,3]恒成立,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{OP}$=(  )
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)=(  )
A.12B.8C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(2x+$\frac{π}{6}$)+cos2x,则f(x)的一个单调递减区间是(  )
A.[$\frac{π}{12}$,$\frac{7π}{12}$]B.[-$\frac{5π}{12}$,$\frac{π}{12}$]C.[-$\frac{π}{3}$,$\frac{2π}{3}$]D.[-$\frac{π}{6}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x2-6x+5≤0},B={x|y=log2(x-2)},则A∩B=(  )
A.(1,2)B.[1,2)C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设min{m,n}表示m、n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=min{($\frac{1}{2}$)x-2,log2(4x)}(x>0),若?x1∈[-5,a](a≥-4),?x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为(  )
A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y均为正实数,且$\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{6}$,则x+y的最小值为(  )
A.24B.32C.20D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x、y满足不等式组$\left\{\begin{array}{l}y≥1\\ x-y≥0\\ x+2y-6≤0\end{array}\right.$时,目标函数z=2x+y的最大值为(  )
A.3B.6C.8D.9

查看答案和解析>>

同步练习册答案