精英家教网 > 高中数学 > 题目详情
20.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{OP}$=(  )
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$

分析 利用空间向量的三角形法则、平行四边形法则,把$\overrightarrow{OP}$用$\overrightarrow{OB}$、$\overrightarrow{OC}$和$\overrightarrow{OA}$线性表示即可.

解答 解:如图所示,
$\overrightarrow{OP}$=$\overrightarrow{ON}$+$\overrightarrow{NP}$,$\overrightarrow{ON}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$),$\overrightarrow{NP}$=$\frac{1}{3}$$\overrightarrow{NM}$,$\overrightarrow{NM}$=$\overrightarrow{OM}$-$\overrightarrow{ON}$,$\overrightarrow{OM}$=$\frac{1}{2}$$\overrightarrow{OA}$.
∴$\overrightarrow{OP}$=$\overrightarrow{ON}$+$\overrightarrow{NP}$
=$\overrightarrow{ON}$+$\frac{1}{3}$$\overrightarrow{NM}$
=$\overrightarrow{ON}$+$\frac{1}{3}$($\overrightarrow{OM}$-$\overrightarrow{ON}$)
=$\frac{2}{3}$$\overrightarrow{ON}$+$\frac{1}{3}$$\overrightarrow{OM}$
=$\frac{2}{3}$×$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$)+$\frac{1}{3}$×$\frac{1}{2}$$\overrightarrow{OA}$
=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$
=$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$.
故选:C.

点评 本题考查了空间向量的线性运算问题,考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知O为坐标原点,F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知虚数z满足$z+\frac{1}{z}∈R$,且|z-2|=2,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\vec a=(sinθ,-\frac{2}{5})$与向量$\vec b=(1,2cosθ)$
(1)若$\vec a$与$\vec b$互相垂直,求tanθ的值;       
(2)若$\vec a∥\vec b$,求$cos(\frac{π}{2}+2θ)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2,那么不等式$f(x)<\frac{1}{2}$的解集是(  )
A.$\left\{{x|0<x<\frac{5}{2}}\right\}$B.$\left\{{x|x<-\frac{3}{2}\;,\;\;或0≤x<\frac{5}{2}}\right\}$
C.$\left\{{x|-\frac{3}{2}<x<0\;,\;\;或0≤x<\frac{5}{2}}\right\}$D.$\left\{{x|-\frac{3}{2}<x<0}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求函数f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
 (2)证明:不等式x1-x+(1-x)x≤$\sqrt{2}$在(0,1)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M=(0,+∞),N=[0,+∞),那么下列关系成立的是(  )
A.M?NB.N?MC.M⊆ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.欧拉(Leonhard Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式eix=cosx+isinx(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占用非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e-4i表示的复数在复平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax3+(a-1)x2-x+2(0≤x≤1)在x=1处取得最小值,则实数a的取值范围是(  )
A.a≤0B.0$≤a≤\frac{3}{5}$C.a≤$\frac{3}{5}$D.a≤1

查看答案和解析>>

同步练习册答案