精英家教网 > 高中数学 > 题目详情
10.已知O为坐标原点,F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为$\frac{1}{3}$.

分析 由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=-c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.

解答 解:由题意可设F(-c,0),A(-a,0),B(a,0),
令x=-c,代入椭圆方程可得y=±$\frac{{b}^{2}}{a}$,可得P(-c,±$\frac{{b}^{2}}{a}$).
设直线AE的方程为y=k(x+a),
令x=-c,可得M(-c,k(a-c)),令x=0,可得E(0,ka),
设OE的中点为H,可得H(0,$\frac{ka}{2}$),
由B,H,M三点共线,可得kBH=kBM,即$\frac{a-c}{a+c}$=$\frac{1}{2}$,即为a=3c,
可得e=$\frac{c}{a}$=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.

点评 本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,则|$\overrightarrow{b}$-2$\overrightarrow{a}$|=(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”,某校研究性学习小组对全校学生按“跟从别人闯红灯”,“从不闯红灯”、“带头闯红灯”等三种形式进行调查,获得下表数据:
  跟从别人闯红灯 从不闯红灯 带头闯红灯
 男生 980 410 60
 女生 340 15060
用分层抽样的方法从所有被调查的人中抽取一个容量为n的样本,其中在“跟从别人闯红灯”的人中抽取了66人.
(Ⅰ)求n的值;
(Ⅱ)在所抽取的“带头闯红灯”的人中,在选取2人参加星期天社区组织的“文明交通”宣传活动,求这2人中至少有一人是女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}$在区间(0,4)内任取一个为x,则不等式log2x-(log${\;}_{\frac{1}{4}}$4x-1)f(log3x+1)≤$\frac{7}{2}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于曲线$C:\frac{1}{x^2}+\frac{1}{y^2}=1$,有如下结论:
①曲线C关于原点对称;
②曲线C关于直线x±y=0对称;
③曲线C是封闭图形,且封闭图形的面积大于2π;
④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;
⑤曲线C与曲线$D:|x|+|y|=2\sqrt{2}$有4个交点,这4点构成正方形.其中所有正确结论的序号为①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列推断错误的个数是(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
②命题“若x2=1,则x=1”的否命题为:若“x2=1,则x≠1”
③“x<1”是“x2-3x+2>0”的充分不必要条件
④若p∧q为假命题,则p,q均为假命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“若a,b都是奇数,则a+b是偶数”的否命题是若a,b不都是奇数,则a+b不是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]时函数f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$对任意x∈(0,3]恒成立,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{OP}$=(  )
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$

查看答案和解析>>

同步练习册答案