精英家教网 > 高中数学 > 题目详情
5.关于曲线$C:\frac{1}{x^2}+\frac{1}{y^2}=1$,有如下结论:
①曲线C关于原点对称;
②曲线C关于直线x±y=0对称;
③曲线C是封闭图形,且封闭图形的面积大于2π;
④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;
⑤曲线C与曲线$D:|x|+|y|=2\sqrt{2}$有4个交点,这4点构成正方形.其中所有正确结论的序号为①②④⑤.

分析 ①,将方程中的x换成-x,y换成-y方程不变;
②,将方程中的x换成-y,y换成-x方程不变,;
③,由方程得x2>1,y2>1,故曲线C不是封闭图形;
④,联立曲线$C:\frac{1}{x^2}+\frac{1}{y^2}=1$圆x2+y2=2,方程组无解,无公共点;
⑤,当x>0,y>0时,联立曲线C与x+y=2$\sqrt{2}$只有一解($\sqrt{2},\sqrt{2}$),根据对称性,共有有4个交点,这4点构成正方形,

解答 解:对于①,将方程中的x换成-x,y换成-y方程不变,故①正确;
对于②,将方程中的x换成-y,y换成-x方程不变,故②正确;
对于③,由方程得x2>1,y2>1,故曲线C不是封闭图形,故③错;
对于④,联立曲线$C:\frac{1}{x^2}+\frac{1}{y^2}=1$圆x2+y2=2,方程组无解,无公共点,故④正确;
对于⑤,当x>0,y>0时,联立曲线C与x+y=2$\sqrt{2}$只有一解($\sqrt{2},\sqrt{2}$),根据对称性,共有有4个交点,这4点构成正方形,正确.
故答案为:①②④⑤

点评 本题考查了命题真假的判定,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC中点.
(1)求证:DM⊥平面PBC;
(2)若点E为BC边上的动点,且$\frac{BE}{EC}=λ$,是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{2}{3}$?若存在,求出实数λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若a1=2,a8+a10=28,则S9=(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.假设有两个分类变量X和Y的2×2列联表:
 Y
X
 y1 y2 总计
 x1 a 10 a+10
 x2 c 30 c+30
 总计 60 40 100
对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为(  )
A.a=45,c=15B.a=40,c=20C.a=35,c=25D.a=30,c=30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知O为坐标原点,F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\frac{2x}{x-1}≥a$在区间[3,5]上恒成立,则实数a的最大值是(  )
A.3B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合P={a|不等式x2+ax+$\frac{1}{16}$≤0有解},集合Q={a|不等式ax2+4ax-4<0对任意实数x恒成立},求P∩Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2,那么不等式$f(x)<\frac{1}{2}$的解集是(  )
A.$\left\{{x|0<x<\frac{5}{2}}\right\}$B.$\left\{{x|x<-\frac{3}{2}\;,\;\;或0≤x<\frac{5}{2}}\right\}$
C.$\left\{{x|-\frac{3}{2}<x<0\;,\;\;或0≤x<\frac{5}{2}}\right\}$D.$\left\{{x|-\frac{3}{2}<x<0}\right\}$

查看答案和解析>>

同步练习册答案