精英家教网 > 高中数学 > 题目详情
19.已知直线y=x+m和圆x2+y2=1交于A、B两点,且|AB|=$\sqrt{3}$,则实数m=(  )
A.±1B.±$\frac{\sqrt{3}}{2}$C.±$\frac{\sqrt{2}}{2}$D.±$\frac{1}{2}$

分析 求出圆的圆心(0,0),半径r=1和圆心(0,0)到直线y=x+m的距离,根据直线y=x+m和圆x2+y2=1交于A、B两点,且|AB|=$\sqrt{3}$,利用勾股定理能求出实数m.

解答 解:圆x2+y2=1的圆心(0,0),半径r=1,
圆心(0,0)到直线y=x+m的距离d=$\frac{|m|}{\sqrt{2}}$,
∵直线y=x+m和圆x2+y2=1交于A、B两点,且|AB|=$\sqrt{3}$,
∴由勾股定理得:${r}^{2}={d}^{2}+(\frac{|AB|}{2})^{2}$,
即1=$\frac{{m}^{2}}{2}$+$\frac{3}{4}$,
解得m=$±\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查实数值的法,是中档题,解题时要认真审题,注意圆的性质、点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设x>0,求$\frac{2{x}^{2}+5x+3}{x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|$\frac{1}{x}-$1|.
(1)若0<a<b且f(a)=f(b),求y=a-$\frac{2}{b}$的取值范围;
(2)若存在正实数a、b使得函数f(x)的定义域为[a,b],值域为[ma,mb],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(I)求C的方程.
(Ⅱ)若直线y=k(x-1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三棱锥的四个面都是直角三角形,各棱长的最大值为4,则该三棱锥外接球的体积为(  )
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{16π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直三棱柱A1B1C1-ABC中,AB=AC=4$\sqrt{2}$,AA1=6,BC=8,则其外接球半径为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.动圆P过点M(-1,O),且与圆N:x2+y2-2x-15=0内切,记圆心P的轨迹为曲线τ.
( 1)求曲线τ的方程;
(2)过点M且斜率大于0的直线l与圆P相切,与曲线τ交于A,B两点,A的中点为Q.若点Q的横坐标为-$\frac{4}{13}$,求圆P的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在一次高三数学模拟测验后,对本班“选考题”选答情况进行统计结果如下:
选修4-1选修4-4选修4-5
男生(人)1064
女生(人)2614
(Ⅰ)从选答“选修4-1”、“选修4-4”和“选修4-5”的同学中,按分层抽样的方法随机抽取7人,则选答“选修4-1”、“选修4-4”和“选修4-5”的同学各抽取几人?
(Ⅱ)在统计结果中,如果把“选修4-1”和“选修4-4”称为“几何类”,把“选修4-5”称为“非几何类”,能否有99%的把握认为学生选答“几何类”与性别有关?
附:.
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知四面体P-ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AB=1,PB=AC=2,则球O的表面积S=9π.

查看答案和解析>>

同步练习册答案