| A. | (-∞,1)∪(9,+∞) | B. | (1,9) | C. | (0,1)∪(9,+∞) | D. | (0,1]∪[9,+∞) |
分析 根据已知得出x,y的约束条件$\left\{\begin{array}{l}{x+y+4>0}\\{3x+y-2>0}\\{x+y+4>3x+y-2}\end{array}\right.$,画出满足约束条件的可行域,再用角点法,求出目标函数z=x-y的最大值,再根据最值给出λ的求值范围.
解答
解:由题意得x,y的约束条件$\left\{\begin{array}{l}{x+y+4>0}\\{3x+y-2>0}\\{x+y+4>3x+y-2}\end{array}\right.$.
画出不等式组$\left\{\begin{array}{l}{x+y+4>0}\\{3x+y-2>0\\;}\\{x<3}\end{array}\right.$表示的可行域如下图示:
在可行域内平移直线z=x-y,
当直线经过3x+y-2=0与x=3的交点A(3,-7)时,
目标函数z=x-y有最大值z=3+7=10.
x-y<λ+$\frac{9}{λ}$恒成立,即:λ+$\frac{9}{λ}$≥10,
即:$\frac{{λ}^{2}-10λ+9}{λ}≥0$.
解得:λ∈(0,1]∪[9,+∞)
故选:D.
点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
科目:高中数学 来源: 题型:解答题
| 甲 | 88 | 89 | 92 | 90 | 91 |
| 乙 | 84 | 88 | 96 | 89 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016×22015 | B. | 2016×22014 | C. | 2017×22015 | D. | 2017×22014 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com