精英家教网 > 高中数学 > 题目详情
13.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.

该表由若干行数字组成,第一行共有2016个数字,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为(  )
A.2016×22015B.2016×22014C.2017×22015D.2017×22014

分析 由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,可得:第n行的第一个数为:(n+1)×2n-2,即可得出.

解答 解:由题意,数表的每一行都是等差数列,
且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014
故第1行的第一个数为:2×2-1
第2行的第一个数为:3×20
第3行的第一个数为:4×21

第n行的第一个数为:(n+1)×2n-2
第2016行只有M,
则M=(1+2016)•22014=2017×22014
故选:D.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在一次购物抽奖活动中,假设某l0张奖券中有一等奖券1张,可获得价值100元的奖品,有二等奖券3张,每张可获得价值50元的奖品,其余6张没有奖,某顾客从此l0张奖券中任抽2张,求
(I)该顾客中奖的概率;
(Ⅱ)该顾客获得奖品总价值X的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某小区有1000户,各户每月的用电量近似服从正态分布N(300,l01),则用电量在320度以上的户数估计约为(  )
(参考数据:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.74%.)
A.17B.23C.34D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z=a+bi(a,b∈R,i为虚数单位)满足z2=-1,则b=(  )
A.1B.±1C.iD.±i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中
①复数a+bi与c+di相等的充要条件是a=c且b=d
②任何复数都不能比较大小
③若$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$,则|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|
④若|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|,则$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$或$\overrightarrow{{z}_{1}}$=-$\overrightarrow{{z}_{2}}$.
正确的选项是(  )
A.①③B.①②C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知${log_{\frac{1}{2}}}$(x+y+4)<${log_{\frac{1}{2}}}$(3x+y-2),若x-y<λ+$\frac{9}{λ}$恒成立,则λ的取值范围是(  )
A.(-∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的前n项为Sn,且满足关系式lg(Sn-1)=n (n∈N*),则数列{an}的通项公式an=(  )
A.9•10n-1B.$\left\{{\begin{array}{l}{11}\\{9•{{10}^{n-1}}}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$
C.10n+1D.$\left\{{\begin{array}{l}9\\{{{10}^n}+1}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某烹任学院为了弘扬中国传统的饮食文化,举办了一场由在校学生参加的厨艺大赛,组委会为了了解本次大赛参赛学生的成绩情况,从参赛学生中抽取了n名学生的成绩(满分100分)作为样本,将所得数经过分析整理后画出了评论分布直方图和茎叶图,其中茎叶图收到污染,请据此解答下列问题:

(1)求频率分布直方图中a,b的值并估计此次参加厨艺大赛学生的平均成绩;
(2)规定大赛成绩在[80,90)的学生为厨霸,在[90,100]的学生为厨神,现从被称为厨霸、厨神的学生中随机抽取3人,其中厨神人数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2sin(2x-$\frac{π}{3}$)在区间[0,$\frac{π}{4}$]上的最小值为(  )
A.-1B.$-\frac{{\sqrt{3}}}{2}$C.$-\sqrt{3}$D.1

查看答案和解析>>

同步练习册答案