精英家教网 > 高中数学 > 题目详情
已知DA⊥平面ABC,AC⊥CB,AC=CB=AD=2,E是DC的中点,F是AB的中点.
(1)证明AC⊥EF;
(2)求二面角C-DB-A的正切值.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(1)取AC中点G,连接EG,GF,由已知条件推导出EG∥DA,GF∥CB,由此得到AC⊥平面EGF,从而能证明AC⊥EF.
(2)连接CF,在平面DAB中作FH⊥DB于点H,连接CH.由已知条件推导出∠FHC就是二面角CDBA的平面角,由此能求出二面角C-DB-A的正切值.
解答: (1)证明:取AC中点G,连接EG,GF,
因为E是DC的中点,F是AB的中点,
所以EG∥DA,GF∥CB,
因为DA⊥平面ABC,AC?平面ABC,所以DA⊥AC,
因此AC⊥EG,因为AC⊥CB,所以AC⊥GF,
EG?平面EGF,GF?平面EGF,EG∩GF=G,
所以AC⊥平面EGF,EF?平面EGF,所以AC⊥EF.
(2)解:连接CF,在平面DAB中作FH⊥DB于点H,
连接CH.因为AC=CB,F是AB的中点,所以CF⊥AB,
因为DA⊥平面ABC,CF?平面ABC,所以CF⊥DA,
DA∩AB=A,DA?平面DAB,AB?平面DAB,所以CF⊥平面DAB,
DB?平面DAB,所以DB⊥CF,因此DB⊥平面FCH,DB⊥CH,
所以∠FHC就是二面角CDBA的平面角.
因为
FH
DA
=
FB
DB
,所以FH=
FB
DB
•DA=
2
AB2+DA2
×2=
2
(2
2
)2+22
×2=
6
3

在直角三角形CFH中,CF=
2
,∠CFH=
π
2

所以tan∠CHF=
CF
FH
=
2
6
3
=
3

所以二面角C-DB-A的正切值为
3
点评:本题考查异面直线垂直的证明,考查二面角的正切值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b是实数,则“a+b>1”是“2a>(
1
2
b”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且满足a1=2,an+1=Sn-n+2.
(1)求{an}的通项公式;
(2)设bn=
n
Sn-n+1
的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x为实数,复数z=(x2+x-2)+(x2+3x+2)i.
(Ⅰ)当x为何值时,复数z为纯虚数?
(Ⅱ)当x=0时,复数z在复平面内对应的点Z落在直线y=-mx+n上,其中mn>0,求
1
m
+
1
n
的最小值及取得最值时的m、n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
4
+
y2
16
=1.
(Ⅰ)求椭圆C的长轴长及离心率;
(Ⅱ)已知直线l过(1,0),与椭圆C交于A,B两点,M为椭圆C的左顶点.是否存在直线l使得∠AMB=60°?如果有,求出直线l的方程;如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标系xOy中,直线l的参数方程为
x=t+1
y=2t
,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ+3=0.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设点P是曲线C上的动点,求它到直线l的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),离心率e=
2
2
,A,B是椭圆上的两动点,动点P满足
OP
=
OA
OB
,(其中实数λ为常数).
(1)求椭圆标准方程;
(2)当λ=1,且直线AB过F点且垂直于x轴时,求过A,B,P三点的外接圆方程;
(3)若直线OA与OB的斜率乘积kOA•kOB=-
1
2
,问是否存在常数λ,使得动点P满足PG+PQ=4,其中G(-
2
,0),Q(
2
,0),若存在求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3-
1
2
(a+1)x2+bx(a,b∈R,a≠1,a>0)
在x=1时取得极值.
(1)求b的值;
(2)求f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)sin163°sin223°+sin253°sin313°
(2)
tan330°•cos(-315°)•cos420°
cot(-600°)•sin1050°

查看答案和解析>>

同步练习册答案