精英家教网 > 高中数学 > 题目详情
6.若$α=\frac{7π}{6}$,则计算1+sin(α-2π)•sin(π+α)-2cos2(-α)所得的结果为$-\frac{1}{4}$.

分析 直接利用诱导公式化简表达式,代入求解即可.

解答 解:1+sin(α-2π)•sin(π+α)-2cos2(-α)
=1+sinα•sinα-2cos2α
=1+sin2$\frac{7π}{6}$-2cos2$\frac{7π}{6}$
=1+$\frac{1}{4}$$-2×\frac{3}{4}$
=$-\frac{1}{4}$.
故答案为:$-\frac{1}{4}$.

点评 本题考查诱导公式以及特殊角的三角函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=-x2+|x|的递减区间是(  )
A.[-$\frac{1}{2}$,0]B.[$\frac{1}{2}$,+∞]C.[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有四个实数,前3个数成等比数列,且它们的积为216,后三个数成等差数列,且它们的和为12,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=log3(x2-2ax+5)在区间(-∞,1]内是减函数,则实数a的取值范围[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列四个命题中
①命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”
②“x=4”是“x2-3x-4=0”的充分条件
③命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0且n≠0”
⑤对空间任意一点O,若满足$\overrightarrow{OP}=\frac{3}{4}\overrightarrow{OA}+\frac{1}{8}\overrightarrow{OB}+\frac{1}{8}\overrightarrow{OC}$,则P,A,B,C四点一定共面.
其中真命题的为①②⑤(将你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列命题:①直线$x+\sqrt{3}y-1=0$的倾斜角是$\frac{2π}{3}$;②已知过抛物线C:y2=2px(p>0)的焦点F的直线与抛物线C交于A(x1,y1),B(x2,y2)两点,则有${x_1}{x_2}=\frac{p^2}{4},{y_1}{y_2}=-{p^2}$;③已知F1、F2为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,点P为双曲线右支上异于顶点的任意一点,则△PF1F2的内心I始终在一条直线上.
其中所有正确命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg$\frac{1-x}{1+x}$,若f(a)=b,求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1、F2是双曲线的两焦点,过F2且垂直于实轴的直线交双曲线于P、Q两点,∠PF1Q=60°,则离心率e=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)证明:平面A1BD∥平面CD1B1
(2)求三棱柱ABD-A1B1D1的体积;
(3)求直线D1C与面ABCD所成角的余弦值.

查看答案和解析>>

同步练习册答案