精英家教网 > 高中数学 > 题目详情
已知集合X={x|x=4n+1,n∈Z},Y={y|y=4n-3,n∈Z},Z={z|z=8n+1,n∈Z},则X,Y,Z的关系是
 
考点:集合的包含关系判断及应用
专题:集合
分析:由集合X={x|x=4n+1,n∈Z},Y={y|y=4n-3=4(n-1)+1,n∈Z},可得X=Y,由n为偶数时,X={x|x=8k+1,k∈Z},由n为奇数时,X={x|x=8k+5,k∈Z},可得Z?A,进而得到三个集合之间的关系.
解答: 解:∵集合X={x|x=4n+1,n∈Z},
Y={y|y=4n-3=4(n-1)+1,n∈Z},
∴X=Y,
又∵n为偶数时,即n=2k,k∈Z时,X={x|x=8k+1,k∈Z}=Z,
由n为奇数时,即n=2k+1,k∈Z时,X={x|x=8k+5,k∈Z},
∴Z?A,
故X,Y,Z的关系是:Z?A=B,
故答案为:Z?A=B
点评:本题考查的知识点是集合的包含关系的判断及应用,正确理解子集的定义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足不等式组
x≥1
y≥1
x+2y≤5
y
x
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意的x1,x2∈(0,+∞),若函数f(x)=lgx,满足
f(x1)+f(x2)
2
≤f(
x1+x2
2
),运用类比的思想方法,当x1,x2∈(
π
2
,π)时,试比较
cosx1+cosx2
2
与cos
x1+x2
2
的大小关系
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
x3+
1
2
ax2+(a-1)x+1在区间(-1,1)上是减函数,在区间(2,3)是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3-
1
x
,若存在区间[a,b]⊆(
1
2
,+∞),使得{y|y=f(x),x∈[a,b]}=[ma,mb],则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax+1-2(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m、n>0,则
1
m
+
2
n
的最小值为(  )
A、3
B、3+2
2
C、2+2
2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

参数方程
x=cosθ
y=1+cosθ
(θ为参数)表示的曲线是(  )
A、圆B、直线C、线段D、射线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2xlnx,g(x)=-x2+ax-3,对一切x∈(0,+∞),f(x)≥g(x)恒成立,则实数a的取值范围是(  )
A、(-∞,4]
B、(-∞,5]
C、[6,+∞)
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
且|
a
|=|
b
|,则a与b的关系是(  )
A、
a
=
b
B、
a
=-
b
C、
a
b
D、
a
2
=
b
2

查看答案和解析>>

同步练习册答案