精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(ωx+φ)+
3
cos(ωx+φ)(ω>0,0<|φ|<
π
2
)
为奇函数,且函数y=f(x)的图象的两相邻对称轴之间的距离为
π
2

(Ⅰ)求f(
π
6
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
π
6
个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递增区间.
考点:函数y=Asin(ωx+φ)的图象变换,由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:(Ⅰ)由函数的奇偶性求出φ,由周期求出ω,可得函数的解析式,从而求得f(
π
6
)的值.
(Ⅱ)根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再根据正弦函数的单调性,求得函数g(x)的单调递增区间
解答: 解:(Ⅰ)f(x)=sin(ωx+φ)+
3
cos(ωx+φ)
=2[
1
2
sin(ωx+φ)+
3
2
cos(ωx+φ)]
=2sin(ωx+φ+
π
3
)

因为f(x)为奇函数,所以f(0)=2sin(φ+
π
3
)=0
,又0<|φ|<
π
2
,可得φ=-
π
3

所以f(x)=2sinωx,由题意得
ω
=2•
π
2
,所以ω=2.
故f(x)=2sin2x,因此f(
π
6
)=2sin
π
3
=
3
. 
(Ⅱ)将f(x)的图象向右平移
π
6
个单位后,得到f(x-
π
6
)
的图象,
所以g(x)=f(x-
π
6
)=2sin[2(x-
π
6
)]=2sin(2x-
π
3
)

2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
(k∈Z),即kπ-
π
12
≤x≤kπ+
12
(k∈Z)时,g(x)单调递增,
因此g(x)的单调递增区间为[kπ-
π
12
,kπ+
12
]
(k∈Z).
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式x2-x≤0的解集为M,且集合N={x|
2
1-x
>1}
,则M∩N为(  )
A、[0,1]
B、(0,1)
C、[0,1)
D、(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若a<0,讨论函数f(x)=x+
a
x
,在其定义域上的单调性;
(2)若a>0,判断并证明f(x)=x+
a
x
在(0,
a
]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x-4y+m=0(m<5)被直线l:x+y-5=0截得的弦长为2
2

(1)求圆C的方程;
(2)若点P(x,y)为圆C上一动点,求x2+y2+6x+2y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a=3
2
,c=6,∠B=45°,
(1)求边b的长.
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(x+
π
6
)的图象向右平移 π个单位后,所得的函数图象(  )
A、关于点(-
π
6
,0)
对称
B、关于直线x=
π
6
对称
C、关于点(
π
3
,0)
对称
D、关于直线x=
π
2
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+x,则满足f(x)<f(2x-3)的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,an=2n-12,Sn是其前n项和,当Sn取最小值时,n=(  )
A、11或12B、12或13
C、5或6D、6或7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(
x
2
+
π
6
).
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)说明此函数图象可由y=sinx的图象经怎样的变换得到.

查看答案和解析>>

同步练习册答案