科目:高中数学 来源: 题型:
如图(6),四棱锥S—ABCD的底面是正方形,侧棱SA⊥底面ABCD,
过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面
AEH交SC于K点,且AB=1,SA=2.
(1)设点P是SA上任一点,试求
的最小值;
(2)求证:E、H在以AK为直径的圆上;
(3)求平面AEKH与平面ABCD所成的锐二面角的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=
a,则
A.a>b B.a<b
C. a=b
D.a与b的大小关系不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
在两个变量
与
的回归模型中,分别选择了4个不同模型,它们的相关指数
如下,其中拟合效果最好的模型是( )
A. 模型1的
为0.55 B.模型2的
为0.65
C. 模型3的
为0.79 D.模型4的
为0.95
查看答案和解析>>
科目:高中数学 来源: 题型:
一个社会调查机构为了解某社区居民的月收入情况,从该社区成人居民中抽取10000人进行调查,根据所得信息制作了如图所示的样本频率分布直方图.
(Ⅰ)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,试求其中月收入在[2000,2500)(2000元至2500元之间)的人数;
(Ⅱ)为了估计从该社区任意抽取的3个居民中恰有2人月收入在[2000,3000)的概率
,特设计如下随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,依次用0,1,2,3,…9的前若干个数字表示月收入在[2000,3000)的居民,剩余的数字表示月收入不在[2000,3000)的居民;再以每三个随机数为一组,代表收入的情况.
假设用上述随机模拟方法已产生了表中的20组随机数,请根据这批随机数估计概率
的值.
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
(Ⅲ)任意抽取该社区的5位居民,用
表示月收入在[2000,3000)(元)的人数,求
的数学期望与方差.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com