精英家教网 > 高中数学 > 题目详情
10.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且当x∈(0,+∞),f′(x)>x,若有f(1-a)-f(a)≥$\frac{1}{2}$-a,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,2]D.[2,+∞)

分析 构造函数g(x)=f(x)-$\frac{1}{2}$x2,可判函数g(x)为奇函数且在R上是增函数,由函数的性质可得a的不等式,解不等式可得.

解答 解:∵f(-x)+f(x)=x2,∴f(x)-$\frac{1}{2}$x2 +f(-x)-$\frac{1}{2}$x2 =0,
令g(x)=f(x)-$\frac{1}{2}$x2,∵g(-x)+g(x)=f(-x)-$\frac{1}{2}$x2+f(x)-$\frac{1}{2}$x2=0,
∴函数g(x)为奇函数.∵x∈(0,+∞)时,f′(x)>x.
∴x∈(0,+∞)时,g′(x)=f′(x)-x>0,
故函数g(x)在(0,+∞)上是增函数,函数g(x)在(-∞,0)上也是增函数,
由f(0)=0,可得g(x)在R上是增函数.
f(1-a)-f(a)≥$\frac{1}{2}$-a等价于f(1-a)-$\frac{1}{2}$(1-a)2≥f(a)-$\frac{1}{2}$a2
即g(1-a)≥g(a),∴1-a≥a,解得a≤$\frac{1}{2}$.
故选:A.

点评 本题考查利用导数研究函数的单调性,由已知条件构造出g(x)=f(x)-$\frac{1}{2}{x}^{2}$是解决本题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.抛物线y=3x2的准线方程是y=-$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某网店在2015年元旦开展庆新年网购促销活动,规定“全场6折促销”活动,在元旦当天购物还可以享受“每张订单金额(6折后)满300元时可减免100元”,某单位在元旦当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他需要下的订单张数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax3-bx2sinx+$\frac{1}{2}$c3,若f′(a)=-1,则f′(-a)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}的通项公式an=3n,其前n项和为Sn,则数列{$\frac{1}{{S}_{n}}$}的前100项和为(  )
A.$\frac{33}{50}$B.$\frac{2}{3}$C.$\frac{200}{303}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|,且不等式f(x)+f(x+2)≤3的解集为M.若x∈M,|y|≤$\frac{1}{6}$,|z|≤$\frac{1}{9}$,求证:|x+2y-3z|≤$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某单位在岗职工624人,为了调查工人用于上班途中的时间,决定采用系统抽样方法抽取10%的工人进行调查,首先在总体中随机剔除4人,将剩下的620名职工编号(分别为000,001,002,…,619),若样本中的最小编号是007,则样本中的最大编号是617.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.经过点P(-2,1),且斜率为0的直线方程一般式为y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(cosα,sinα),设$\overrightarrow{c}$=$\overrightarrow{a}$-t$\overrightarrow{b}$(t为实数).
(1)t=1 时,若$\overrightarrow{c}$∥$\overrightarrow{b}$,求2cos2α-sin2α的值;
(2)若α=$\frac{π}{4}$,求|$\overrightarrow{c}$|的最小值,并求出此时向量$\overrightarrow{a}$在$\overrightarrow{c}$方向上的投影.

查看答案和解析>>

同步练习册答案