分析 (1)利用二倍角公式和两角差的正弦函数公式化简整理求得函数f(x)的解析式,进而利用正弦函数的性质求得函数的最小正周期.
(2)根据(1)中函数的解析式,利用正弦函数的单调性即可得解.
解答 解:(1)∵y=sin2x+2sinxcosx-3cos2x
=$\frac{1-cos2x}{2}$+sin2x-3×$\frac{1+cos2x}{2}$
=sin2x-2cos2x-1
=$\sqrt{5}$sin(2x-φ)-1,其中,tanφ=2,
∴函数的最小正周期T=$\frac{2π}{2}=π$.
(2)∵由(1)可得:y=$\sqrt{5}$sin(2x-φ)-1,其中,tanφ=2,
∴ymax=$\sqrt{5}$-1.
点评 本题主要考查了二倍角公式和两角差的正弦函数公式化简求值.考查了学生对三角函数基础知识的综合运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{56}$ | B. | $\frac{55}{56}$ | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{2}{3}$,1) | B. | ($\frac{2}{3}$,+∞) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com