精英家教网 > 高中数学 > 题目详情
14.-$\frac{23}{12}$π弧度化为角度应为-345°.

分析 利用π弧度=180°,1弧度=($\frac{180}{π}$)°即可求得答案.

解答 解:∵1rad=($\frac{180}{π}$)°,
∴-$\frac{23}{12}$π=-$\frac{23}{12}$π×($\frac{180}{π}$)°=-345°.
故答案为:-345°

点评 本题考查弧度与角度的互化,关键在于掌握二者的互化公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)•f(b).则下列结论成立的是①②(填序号)
①f(0)=1;             
②对任意的x∈R,恒有f(x)>0;
③f(x)是R上的减函数;
④若f(x)•f(2x-x2)>1,则x的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了调查学生星期天晚上学习时间利用问题,某校从2015-2016学年高二年级1000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取n名学生进行问卷调查,根据问卷取得了这n名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),得到频率分布直方图如图,已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人.
(1)求n的值;
(2)如果“学生晚上学习时间达到两小时”,则认为其利用时间充分,否则,认为利用时间不充分;对抽取的n名学生,完成下列2×2列联表:
利用时间充分利用时间不充分合计
走读生30  
住校生 10 
合计  
据此资料,是否有95%的把握认为“学生利用时间是否充分”与“走读、住校”有关?
(3)若在第①组、第②组共抽出2人调查影响有效利用时间的原因,求抽出的2人中第①组、第②组各有1人的概率.

附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

p(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=e-x-ax2f′(x).若f′(1)=$\frac{1}{e}$,则实数a的值等于(  )
A.-1B.1C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,复数z满足$\frac{z}{1-z}$=i,则$\overline z$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$i-$\frac{1}{2}$D.-$\frac{1}{2}$i-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.命题p:“关于x的方程x2+ax+1=0有解”,命题q:“?x∈R,e2x-2ex+a≥0恒成立”,若“p∧q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0相垂直,则ab的最小值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.比较下列三数的大小
(1)log30.8,log40.8,log50.8;
(2)1.10.9,log1.10.9,log0.70.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.平面内有两个定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x≥3).

查看答案和解析>>

同步练习册答案