【题目】甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
(1)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求的值;
(2)如果 ,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为,求的概率;
(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出的所有可能取值.(结论不要求证明)
【答案】(Ⅰ)15;(Ⅱ) ;(Ⅲ)的可能取值为, , .
【解析】试题分析:(1)由题意,得中至少有一个不小于,由此能得到的值;(2)设“从甲乙的局比赛中随机各选取局,且得分满足”为事件,记甲的局比赛为,各局的得分分别为;乙局的局比赛为,各局的得分分别是,利用列举法能求出的概率;(3)由题设条件能求出的可能的取值为.
试题解析:(1)由题意得,即.
∵在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,
∴至少有一个小于6,又∵,且,
∴,∴.
(2)设“从甲、乙的4局比赛中随机各选取1局,且得分满足”为事件,
记甲的4局比赛为,各局的得分分别是6,6,9,9;乙的4局比赛为,各局的得分分别是7,9,6,10.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:,,,,,,,,,,,,,,,.而事件的结果有8种,它们是:,,,,,,,,∴事件的概率.
(3)的所有可能取值为6,7,8.
科目:高中数学 来源: 题型:
【题目】某学校的平面示意图为如下图五边形区域,其中三角形区域为生活区,四边形区域为教学区, 为学校的主要道路(不考虑宽度). .
(1)求道路的长度;(2)求生活区面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了了解树苗生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米).把这些高度列成了如下的频率分布表:
(1)在这批树苗中任取一棵,其高度不低于80厘米的概率大约是多少?
(2)这批树苗的平均高度大约是多少?(用各组的中间值代替各组数据的平均值)
(3)为了进一步获得研究资料,若从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组中的树苗和组中的树苗同时被移出的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域与值域都是[﹣2,2]的两个函数f(x)、g(x)的图象如图所示(实线部分),则下列四个命题中,
①方程f[g(x)]=0有6个不同的实数根;
②方程g[f(x)]=0有4个不同的实数根;
③方程f[f(x)]=0有5个不同的实数根;
④方程g[g(x)]=0有3个不同的实数根;
正确的命题是( )
A.②③④
B.①④
C.②③
D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为.
(1)求游戏结束时小华在第2个台阶的概率;
(2)求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,则关于函数F(x)=f(f(x))的零点个数,正确的结论是 . (写出你认为正确的所有结论的序号)
①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.
③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com