精英家教网 > 高中数学 > 题目详情
4.已知平面上两点M(-5,0)和N(5,0),若直线上存在点P使|PM|-|PN|=6,则称该直线为“单曲型直线”,下列直线中:
①y=x+1 ②y=2 ③y=$\frac{4}{3}$x ④y=2x+1
是“单曲型直线”的是①②.

分析 由已知点P在以M、N为焦点的双曲线的右支上,即$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$,(x>0).分别与①②③④中的直线联立方程组,根据方程组的解的性质判断该直线是否为“单曲型直线”.

解答 解:∵|PM|-|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$,(x>0).
对于①,联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=x+1}\end{array}\right.$,消y得7x2-18x-153=0,
∵△=(-18)2-4×7×(-153)>0,∴y=x+1是“单曲型直线”.
对于②,联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=2}\end{array}\right.$,消y得x2=$\frac{15}{4}$,∴y=2是“单曲型直线”.
对于③,联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=\frac{x}{4}}\end{array}\right.$,整理得144=0,不成立.∴$y=\frac{4}{3}x$不是“单曲型直线”.
对于④,联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1}\\{y=2x+1}\end{array}\right.$,消y得20x2+36x+153=0,
∵△=362-4×20×153<0∴y=2x+1不是“单曲型直线”.
故符合题意的有①②.
故答案为:①②.

点评 本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3,4},B={2,3,4},则A∩B的元素个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“对任意x∈R,都有x 2≥ln2”的否定为(  )
A.对任意x∈R,都有x 2<ln2B.不存在x∈R,都有x 2<ln2
C.存在x∈R,使得x 2≥ln2D.存在x∈R,使得x 2<ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.石嘴山市在每年的春节后,市政府都会发动公务员参与到植树活动中去.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲乙两种树苗中各抽测了10株树苗的高度,量出的高度如下(单位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根据抽测结果,完成答题卷中的茎叶图(图1),并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为$\overline x$,将这10株树苗的高度依次输入按程序框图(图2)进行的运算,问输出的S大小为多少?并说明S的统计学意义.
(3)现从10株甲种树苗中随机抽取两株高度不低于25cm的树苗,求高度为33cm的树苗被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线l的方向向量为$\overrightarrow{a}$=(1,0,2),平面α的法向量为$\overrightarrow{n}$=(-2,0,-4),则(  )
A.l∥αB.l⊥α
C.l?αD.l与α相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设命题p:若实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某地夏天从8~14时用电量变化曲线近似满足函数y=Asin(ωx+φ)+b(ω>0,0<φ<π).
(1)指出这一时间段的最大用电量及最小用电量;
(2)求出A,ω,φ,b的值,写出这段曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,x2+1>0,命题q:若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案