精英家教网 > 高中数学 > 题目详情
13.甲、乙两组数据的茎叶图如图所示,则平均数较小的一组数为甲.(选填“甲”或“乙”)

分析 根据茎叶图中的数据,分别计算出甲乙的平均数进行比较即可.

解答 解:甲的平均数为$\frac{1}{5}$(18+21+29+35+32)=27,
乙的平均数为$\frac{1}{5}$(19+23+27+33+35)=$\frac{137}{5}$>27,
则平均数比较少的是甲,
故答案为:甲

点评 本题主要考查茎叶图的应用,结合平均数的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某渔业公司为了解投资收益情况,调查了旗下的养鱼场和远洋捕捞队近10个月的利润情况.根据所收集的数据得知,近10个月总投资养鱼场一千万元,获得的月利润频数分布表如下:
月利润(单位:千万元)-0.2-0.100.10.3
频数21241
近10个月总投资远洋捕捞队一千万元,获得的月利润频率分布直方图如下:

(Ⅰ)根据上述数据,分别计算近10个月养鱼场与远洋捕捞队的月平均利润;
(Ⅱ)公司计划用不超过6千万元的资金投资于养鱼场和远洋捕捞队,假设投资养鱼
场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元,且投资养鱼场的资金不少于投资远洋捕捞队的资金的2倍.试用调查数据,给出公司分配投资金额的建议,使得公司投资这两个项目的月平均利润之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,∠ADC=90°,AD∥BC,$\frac{1}{3}$BC=$\frac{1}{2}$CD=AD=1,PA⊥平面ABCD,PA=2AD,E是线段PD上的点,设PE=λPD,F是BC上的点,且AF∥CD
(Ⅰ)若λ=$\frac{2}{3}$,求证:PB∥平面AEF
(Ⅱ)三棱锥P-AEF的体积为$\frac{1}{3}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=\sqrt{\frac{x-3}{2-x}}$的定义域是(  )
A.{x|2≤x≤3}B.{x|x≤2或x≥3}C.{x|2<x≤3}D.{x|x<2或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某高新技术公司要生产一批新研发的A款手机和B款手机,生产一台A款手机需要甲材料3kg,乙材料1kg,并且需要花费1天时间,生产一台B款手机需要甲材料1kg,乙材料3kg,也需要1天时间,已知生产一台A款手机利润是1000元,生产一台B款手机的利润是2000元,公司目前有甲、乙材料各,则在300kg不超过120天的情况下,公司生产两款手机的最大利润是210000元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}中,a1=1,a2=4,a3=10.若{an+1-an}是等比数列,则$\sum_{i=1}^{10}{a}_{i}$=3×2n-2n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:?x<0,x3<0,那么¬p是(  )
A.?x<0,x3≥0B.?x0>0,x03≤0C.?x0<0,x03≥0D.?x>0,x3≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xlnx,e为自然对数的底数.
(Ⅰ)求曲线y=f(x)在x=e-3处的切线方程;
(Ⅱ)关于x的不等式f(x)≥λ(x-1)在(0,+∞)恒成立,求实数λ的取值范围.
(Ⅲ)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1-x2|<$\frac{3}{2}$a+1+$\frac{1}{2{e}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+$\frac{7}{2}$a2-a(a>0):月需求量为y2吨,y2=-$\frac{1}{224}$x2-$\frac{1}{112}$x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知a=$\frac{1}{7}$,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.

查看答案和解析>>

同步练习册答案